AKTS - Sayısal Lineer Cebir
Sayısal Lineer Cebir (MDES621) Ders Detayları
Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
---|---|---|---|---|---|---|---|
Sayısal Lineer Cebir | MDES621 | Alan Seçmeli | 3 | 0 | 0 | 3 | 5 |
Ön Koşul Ders(ler)i |
---|
N/A |
Dersin Dili | İngilizce |
---|---|
Dersin Türü | Seçmeli Dersler |
Dersin Seviyesi | Fen Bilimleri Yüksek Lisans |
Ders Verilme Şekli | Yüz Yüze |
Dersin Öğrenme ve Öğretme Teknikleri | Anlatım. |
Dersin Öğretmen(ler)i |
|
Dersin Amacı | Bu ders; yüksek lisans düzeyindeki mühendislik öğrencilerine elektrik şebekeleri, katıların mekaniği, sinyal analizi ve optimizasyon gibi bilimin pekçok farklı alanında ortaya çıkan lineer cebir problemlerinin yaklaşık çözümlerinin elde edilmesinde kullanıllan sayısal yöntemlerin anlaşılması ve kullanılması için gerekli uzmanlığı kazandırmak amacıyla tasarlanmıştır. Ele alınan problemin matematiksel yapısı bakımından en iyi algoritmanın seçimi, yuvarlama(hataları)nın algoritmalar üzerine etkileri ile, lineer denklem sistemlerinin çözümü, en küçük kareler problemi, özdeğer-özvektör problemi gibi lineer cebir problemlerinin sayısal çözümünde kullanılan yöntemler; üzerinde ençok durulan konulardır. |
Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Dersin İçeriği | Kayan noktalı hesaplamalar, vektör ve matris normları. lineer denklem sistemlerinin doğrudan çözüm yöntemleri, en küçük kareler problemleri, özdeğer problemleri, tekil değer ayrışımı, lineer denklem sistemleri için yinelemeli yöntemler. |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Sayısal hesaplamalara giriş. Vektör ve Matris Normları. | Kaynaklardan ilgili başlığın araştırılması |
2 | Şartlandırma sayıları ve şartlandırma, Kararlılık, Yuvarlama hatalarının yayılımı | Kaynaklardan ilgili başlığın araştırılması |
3 | Lineer denklem sistemleri için doğrudan çözüm yöntemleri, Gauss yoketme yöntemi, Pivot işlemi, Kararlılık. LU ve Cholesky ayrışımları | Kaynaklardan ilgili başlığın araştırılması |
4 | LU ve Cholesky ayrışımları(devam), İşlem sayıları, Hata analizi, Pertürbasyon Teorisi, Özel(yapıda) lineer sistemler | Kaynaklardan ilgili başlığın araştırılması |
5 | En Küçük Kareler. Ortogonal matrisler, Normal denklemleri, QR ayrışımı | Kaynaklardan ilgili başlığın araştırılması |
6 | Gram-Schmidt ortogonalleştirmesi, Householder üçgenleştirmesi, En Küçük Kareler problemleri | Kaynaklardan ilgili başlığın araştırılması |
7 | ÖzDeğer-Özvektör Problemi, Özdeğerler ve özvektörler, Gersgorin Çember Teoremi, Özdeğer problemi için sayısal yöntemler | Kaynaklardan ilgili başlığın araştırılması |
8 | Kuvvet, Ters Kuvvet ve Kaydırılmış Kuvvet Yöntemleri, Rayleigh Oranı, Benzerlik dönüşümleri, Hessenberg ve üçgensel biçimlere indirgeme | Kaynaklardan ilgili başlığın araştırılması |
9 | Özdeğerler ve özvektörler için QR algoritması, diğer özdeğer algoritmaları. Tekil Değer Ayrışımı(TDA) | Kaynaklardan ilgili başlığın araştırılması |
10 | TDA(devam) ve En Küçük Kareler problemi ile ilişkisi, QR algoritmasının kullanılarak TDA’nın hesaplanması | Kaynaklardan ilgili başlığın araştırılması |
11 | Lineer sistemler için Yinelemeli yöntemler. Temel yinelemeli yöntemler, Jacobi ve Gauss-Seidel yöntemleri | Kaynaklardan ilgili başlığın araştırılması |
12 | Rishardson ve SOR yöntemleri, Yinelemeli yöntemlerin yakınsaklık analizi | Kaynaklardan ilgili başlığın araştırılması |
13 | Krylov altuzayı yöntemleri, Önşartlandırma ve önşartlayıcılar | Kaynaklardan ilgili başlığın araştırılması |
14 | Genel Tekrar | - |
15 | Genel Tekrar | - |
16 | Final sınavı | - |
Kaynaklar
Ders Kitabı | 1. L.N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, 1997. |
---|---|
2. J.W.Demmel, Applied Numerical Linear Algebra, SIAM, 1997 | |
Diğer Kaynaklar | 3. G.H. Golub and C.F. van Loan. Matrix Computations, John Hopkin’s University Press, 3rd edition, 1996. |
4. A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, 1997. | |
5. C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000. | |
6. O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1996. | |
7. D.S. Watkins, Fundamentals on Matrix Computations, John Wiley and Sons, 1991. | |
8. K.E.Atkinson, An Introduction to Numericall Analysis, John Wiley and Sons, 1999. |
Değerlendirme System
Çalışmalar | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | - | - |
Laboratuar | - | - |
Uygulama | - | - |
Alan Çalışması | - | - |
Derse Özgü Staj | - | - |
Küçük Sınavlar/Stüdyo Kritiği | 5 | 10 |
Ödevler | 7 | 9 |
Sunum | - | - |
Projeler | - | - |
Rapor | - | - |
Seminer | - | - |
Ara Sınavlar/Ara Juri | 2 | 46 |
Genel Sınav/Final Juri | 1 | 35 |
Toplam | 15 | 100 |
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | 65 |
---|---|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 35 |
Toplam | 100 |
Kurs Kategorisi
Temel Meslek Dersleri | X |
---|---|
Uzmanlık/Alan Dersleri | |
Destek Dersleri | |
İletişim ve Yönetim Becerileri Dersleri | |
Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
# | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Matematik, fen bilimleri ve mekatronik mühendisliği ile ilgili konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri mühendislik problemlerini modelleme ve çözme için uygulayabilme becerisi. | X | ||||
2 | Karmaşık mekatronik mühendisliği problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi. | X | ||||
3 | Karmaşık bir mekatronik mühendisliği sistemini, sürecini, cihazını veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi; mekatronik mühendisliği kapsamında mühendislik yaratıcılığı yöntemlerini etkin bir şekilde uygulayabilme becerisi. (Gerçekçi kısıtlar ve koşullar tasarımın niteliğine göre, ekonomi, çevre sorunları, sürdürülebilirlik, üretilebilirlik, etik, sağlık, güvenlik, sosyal ve politik sorunlar gibi öğeleri içerirler.) | X | ||||
4 | Mekatronik mühendisliği ve robot teknolojisi uygulamaları için gerekli olan modern teknik ve araçları geliştirme, seçme ve kullanma becerisi; bilişim ve iletişim teknolojilerini etkin bir şekilde kullanma becerisi. | X | ||||
5 | Mekatronik mühendisliği ve robot teknolojisi problemlerinin incelenmesi için deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama becerisi. | |||||
6 | Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi; mekatronik mühendisliğinin yakın etkileşim içinde olduğu makina, elektrik/elektronik ve bilgisayar mühendislikleri ile mekatronik mühendisliğinin uygulama alanı içinde diğer mühendislik ve bilim dalları veya çalışma alanları ile etkin iletişim kurabilme becerisi, farklı disiplinlerde çalışabilme becerisi. | |||||
7 | Türkçe ve İngilizce sözlü ve yazılı etkin iletişim kurma, yaratıcı ve özgün kavram ve fikirleri ifade edebilme becerisi. | |||||
8 | Mekatronik mühendisliğinin uygulama çeşitliliğinin gerektirdiği şekilde değişik konularda bilgiye erişim, eleştirel bakış, yorumlama ve bilgiyi geliştirme becerisi; yaşam boyu öğrenme sonucu gelişme ve sürekli yenileme gerekliliği bilinci; bilim ve teknolojideki gelişmeleri izleme; girişimcilik, yenilikçilik ve sürdürebilir kalkınma hakkında farkındalık ve kendini sürekli yenileme becerisi. | |||||
9 | Mesleki ve etik sorumluluk bilincine sahip olma, bu konuda iletişim araçlarını kullanarak meslek bilincini geliştirme ve mesleğin gelişimine katkıda bulunma yetkinliği. | |||||
10 | Proje yönetimi ile risk yönetimi ve değişiklik yönetimi gibi iş hayatındaki uygulamalar hakkında bilgi ve sorumluluğu altında çalışanların bir proje çerçevesinde gelişimlerine yönelik etkinlikleri planlayabilme, yönetebilme ve liderlik yetkinliği. | |||||
11 | Mekatronik mühendisliği uygulamalarının evrensel, toplumsal ve bireysel boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ile kültürel değerler ve çağın sorunları hakkında bilgi; bu konularda mühendislik bilinci; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık. | |||||
12 | Mekatronik mühendisliği konularında, sorunları tanımlayabilme, analiz edebilme, kaynak araştırması yapabilme, veritabanları ve diğer bilgi kaynaklarını kullanarak yaptığı araştırmalara ve kanıtlara dayalı çözüm önerileri geliştirebilme ve sorunlara ilişkin çözüm önerilerini nicel ve nitel olarak aktarabilme yetkinliği. | |||||
13 | Yaşadığı çevreye duyarlı ve toplumsal sorumluluk bilincine sahip, sosyal ilişkileri ve bu ilişkileri yönlendiren normları eleştirel bir bakış açısıyla inceleyen, geliştiren ve gerektiğinde değiştirebilen, toplum içinde bir birey olma ve topluma yönelik proje düzenleme, geliştirebilme ve uygulayabilme yetkinliği. | |||||
14 | Mekatronik mühendisliği konularında strateji, politika ve uygulama planları geliştirebilme ve elde edilen sonuçları kalite süreçleri çerçevesinde değerlendirebilme yetkinliği. |
ECTS/İş Yükü Tablosu
Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
---|---|---|---|
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 3 | 48 |
Laboratuar | |||
Uygulama | |||
Derse Özgü Staj | |||
Alan Çalışması | |||
Sınıf Dışı Ders Çalışma Süresi | 16 | 2 | 32 |
Sunum/Seminer Hazırlama | |||
Projeler | |||
Raporlar | |||
Ödevler | 7 | 3 | 21 |
Küçük Sınavlar/Stüdyo Kritiği | 5 | 1 | 5 |
Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 2 | 8 | 16 |
Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 10 | 10 |
Toplam İş Yükü | 132 |