AKTS - Veri Biliminde Eniyileme
Veri Biliminde Eniyileme (IE441) Ders Detayları
Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
---|---|---|---|---|---|---|---|
Veri Biliminde Eniyileme | IE441 | Alan Seçmeli | 3 | 0 | 0 | 3 | 5 |
Ön Koşul Ders(ler)i |
---|
N/A |
Dersin Dili | İngilizce |
---|---|
Dersin Türü | Seçmeli Dersler |
Dersin Seviyesi | Fen Bilimleri Yüksek Lisans |
Ders Verilme Şekli | Yüz Yüze |
Dersin Öğrenme ve Öğretme Teknikleri | Anlatım, Soru Yanıt. |
Dersin Öğretmen(ler)i |
|
Dersin Amacı | Bu dersin amacı, Ar-Ge çalışmalarını azami oranda desteklemek üzere teknoloji, ürün, süreç ve sistemin yaşam döngülerini tanıtmaktır. Mevcut bilimden daha fazla bilim ve mevcut teknolojiden daha fazla teknoloji üretilmesi hedeflenmektedir. Bir ülkeyi kendine güvenen, güçlü ve teknoloji gelişmiş bir ülke yapmaya karar vererek milli savunma, milli kalkınma ve ekonomik büyüme için gerekli araçlar ve mesleki kariyer süresince karşılaşılan teknoloji yönetimi sorunları ve aşağıda belirtilen ders içeriği ile birlikte küreselleşme ele alınmaktadır. |
Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Dersin İçeriği | Doğrusal cebir, olasılık, ve istatistik tekrarı ile veri biliminde doğrusal programlama, tamsayılı programlama, karma tamsayılı programlama, doğrusal olmayan programlama uygulamaları, Python diline giriş ve çeşitli Python kütüphanelerinin veri bilimi problemlerinde kullanımı. |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | İlk toplantı - Müfredat tanıtımı | |
2 | Lineer cebir ve olasılık gözden geçirme | |
3 | Lineer cebir ve olasılık gözden geçirme | |
4 | Lineer cebir ve olasılık gözden geçirme | |
5 | Lineer cebir ve olasılık gözden geçirme | |
6 | Tamsayı ve karışık tamsayı programlama uygulamaları | |
7 | Tamsayı ve karışık tamsayı programlama uygulamaları | |
8 | Tamsayı ve karışık tamsayı programlama uygulamaları | |
9 | Ara Sınav | |
10 | Doğrusal olmayan programlama uygulamaları | |
11 | Doğrusal olmayan programlama uygulamaları | |
12 | Doğrusal olmayan programlama uygulamaları | |
13 | Sinir ağları | |
14 | Sinir ağları | |
15 | Sinir ağları | |
16 | Dersin gözden geçirilmesi |
Kaynaklar
Ders Kitabı | 1. Mathematics for Machine Learning, M.P. Deisenroth, A.A. Faisal, C.S. Ong, Cambridge University Press, 2020. |
---|---|
Diğer Kaynaklar | 2. A.C. Müller, S. Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists, 1 st Edition, O'Reilly Media, 2016. |
Değerlendirme System
Çalışmalar | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | - | - |
Laboratuar | - | - |
Uygulama | - | - |
Alan Çalışması | - | - |
Derse Özgü Staj | - | - |
Küçük Sınavlar/Stüdyo Kritiği | - | - |
Ödevler | - | - |
Sunum | 1 | 15 |
Projeler | 1 | 25 |
Rapor | - | - |
Seminer | - | - |
Ara Sınavlar/Ara Juri | 1 | 25 |
Genel Sınav/Final Juri | 1 | 35 |
Toplam | 4 | 100 |
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | |
---|---|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 100 |
Toplam | 100 |
Kurs Kategorisi
Temel Meslek Dersleri | X |
---|---|
Uzmanlık/Alan Dersleri | |
Destek Dersleri | |
İletişim ve Yönetim Becerileri Dersleri | |
Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
# | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Alanında bilimsel araştırma yaparak bilgiye genişlemesine ve derinlemesine ulaşır, bilgiyi değerlendirir, yorumlar ve uygular. | X | ||||
2 | Mühendislikte uygulanan güncel teknik ve yöntemler ile bunların kısıtları hakkında kapsamlı bilgi sahibidir. | X | ||||
3 | Belirsiz, sınırlı ya da eksik verileri kullanarak, bilimsel yöntemlerle bilgiyi tamamlar ve uygular; değişik disiplinlere ait bilgileri bir arada kullanabilir. | |||||
4 | Mesleğinin yeni ve gelişmekte olan uygulamalarının farkındadır, ihtiyaç duyduğunda bunları inceler ve öğrenir. | |||||
5 | Alanı ile ilgili problemleri tanımlar ve formüle eder, çözmek için yöntem geliştirir ve çözümlerde yenilikçi yöntemler uygular. | X | ||||
6 | Yeni ve/veya özgün fikir ve yöntemler geliştirir; karmaşık sistem veya süreçleri tasarlar ve tasarımlarında yenilikçi/alternatif çözümler geliştirir. | |||||
7 | Kuramsal, deneysel ve modelleme esaslı araştırmaları tasarlar ve uygular; bu süreçte karşılaşılan karmaşık problemleri irdeler ve çözümler. | |||||
8 | Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilir, bu tür takımlarda liderlik yapabilir ve karmaşık durumlarda çözüm yaklaşımları geliştirebilir; bağımsız çalışabilir ve sorumluluk alır. | X | ||||
9 | Bir yabancı dili en az Avrupa Dil Portföyü B2 Genel Düzeyinde kullanarak, sözlü ve yazılı iletişim kurar. | |||||
10 | Çalışmalarının süreç ve sonuçlarını, o alandaki veya alan dışındaki ulusal ve uluslararası ortamlarda sistematik ve açık bir şekilde yazılı ya da sözlü olarak aktarır. | |||||
11 | Mühendislik uygulamalarının sosyal, çevresel, sağlık, güvenlik, hukuk boyutları ile proje yönetimi ve iş hayatı uygulamalarını bilir ve bunların mühendislik uygulamalarına getirdiği kısıtların farkındadır. | |||||
12 | Verilerin toplanması, yorumlanması, duyurulması aşamalarında ve mesleki tüm etkinliklerde toplumsal, bilimsel ve etik değerleri gözetir. |
ECTS/İş Yükü Tablosu
Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
---|---|---|---|
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 3 | 48 |
Laboratuar | |||
Uygulama | |||
Derse Özgü Staj | |||
Alan Çalışması | |||
Sınıf Dışı Ders Çalışma Süresi | 14 | 2 | 28 |
Sunum/Seminer Hazırlama | 1 | 4 | 4 |
Projeler | 1 | 20 | 20 |
Raporlar | |||
Ödevler | |||
Küçük Sınavlar/Stüdyo Kritiği | |||
Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 1 | 10 | 10 |
Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 15 | 15 |
Toplam İş Yükü | 125 |