AKTS - İleri Lineer Cebir
İleri Lineer Cebir (MATH622) Ders Detayları
Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
---|---|---|---|---|---|---|---|
İleri Lineer Cebir | MATH622 | 1. Dönem | 3 | 0 | 0 | 3 | 5 |
Ön Koşul Ders(ler)i |
---|
N/A |
Dersin Dili | İngilizce |
---|---|
Dersin Türü | Zorunlu Bölüm Dersleri |
Dersin Seviyesi | Doktora |
Ders Verilme Şekli | Yüz Yüze |
Dersin Öğrenme ve Öğretme Teknikleri | Anlatım, Tartışma, Soru Yanıt, Sorun/Problem Çözme. |
Dersin Öğretmen(ler)i |
|
Dersin Amacı | Bu ders, ileri lineer cebir konularının temel kavramlarını öğretmek üzere tasarlanmıştır. |
Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Dersin İçeriği | Temel lineer cebir, lineer dönüşümler, lineer operatörün yapısı, özdeğer ve özvektörler, reel ve kompleks iç çarpım uzayları, normal operatörlerin yapısal teorisi, metrik vektör uzayları: bilineer formların teorisi, Hilbert uzayları, tensor çarpımları, operator faktorizasyonu: QR ve tekil değerler. |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Temel lineer cebir konuları | s. 31-49 |
2 | Lineer dönüşümler | s. 55-71 |
3 | Lineer operatörün yapısı | s. 141-151 |
4 | Özdeğer ve özvektörler | s. 153-160 |
5 | Özdeğer ve özvektörler | s. 161-174 |
6 | Reel ve kompleks iç çarpım uzayları | s. 181-195 |
7 | Normal operatörlerin yapısal teorisi | s. 201-215 |
8 | Normal operatörlerin yapısal teorisi | s. 216-232 |
9 | Metrik vektör uzayları: bilineer formların teorisi | s. 239-257 |
10 | Hilbert Uzayları | s. 307-318 |
11 | Hilbert Uzayları | s. 319-331 |
12 | Tensör çarpımları | s. 337-363 |
13 | Tensör çarpımları | s. 366-374 |
14 | Operatör faktorizasyonu: QR ve tekil değerler | s. 425-434 |
15 | Genel tekrar | |
16 | Genel tekrar ve Final Sınavı |
Kaynaklar
Ders Kitabı | 1. Advanced Linear Algebra, Steven Roman, 2nd Edition, Springer, 2005 |
---|---|
2. Matrices: Theory and Applications, Denis Serre, Springer, 2002 | |
3. A Guide to Advanced Linear Algebra, Steven H. Weintraub, Dolciani Mathematical Expositions, 2011 |
Değerlendirme System
Çalışmalar | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | - | - |
Laboratuar | - | - |
Uygulama | - | - |
Alan Çalışması | - | - |
Derse Özgü Staj | - | - |
Küçük Sınavlar/Stüdyo Kritiği | - | - |
Ödevler | 4 | 20 |
Sunum | - | - |
Projeler | - | - |
Rapor | - | - |
Seminer | - | - |
Ara Sınavlar/Ara Juri | 1 | 40 |
Genel Sınav/Final Juri | 1 | 40 |
Toplam | 6 | 100 |
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | 60 |
---|---|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 40 |
Toplam | 100 |
Kurs Kategorisi
Temel Meslek Dersleri | X |
---|---|
Uzmanlık/Alan Dersleri | |
Destek Dersleri | |
İletişim ve Yönetim Becerileri Dersleri | |
Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
# | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Alanında, bağımsız olarak, bir problem kurgulayabilir, çözüm yöntemi geliştirerek problemi çözebilir ve sonuçları değerlendirebilir | X | ||||
2 | Matematiğin temel alanlarında ve kendi uzmanlığı olarak seçtiği alanda gerekli alt yapıyı oluşturur. | X | ||||
3 | Matematik literatürünü ve özel olarak kendi araştırma konusu ile ilgili ulusal ve uluslararası güncel yayınları takip edebilir ve bunlardan kendi araştırma konusu ile ilgili olanları çalışmalarında kullanabilir | X | ||||
4 | Bilimsel etik değerleri ve kuralları dikkate alır ve mesleki ve toplumsal yaşamda kullanabilir | X | ||||
5 | Kendi çalışmalarının sonuçlarını veya belli bir konudaki güncel çalışmaları ve bulguları, çeşitli bilimsel toplantılarda topluluk önünde Türkçe ve İngilizce olarak sunabilir ve tartışmalara katılabilir. | X | ||||
6 | Gerek bireysel, gerek bir çalışma grubunun üyesi olarak çalışabilme becerisini geliştirir | X | ||||
7 | Yaratıcı ve eleştirel düşünme, problem çözme, özgün bir çalışma üretme becerisini geliştirir. Bilimsel gelişmeleri takip eder, özümsediği bilgilerin analiz, sentez ve değerlendirmesini yapabilir. | X | ||||
8 | Kazandığı bilgi, beceri ve yetkinlikleri yaşam boyu geliştirmeye açık olur. | X | ||||
9 | Alanında özümsediği bilgiyi ve problem çözme yeteneğini disiplinler arası çalışmalarda uygulayabilir; karşılaşılan problemleri matematiksel modellerle ifade ederek, matematiksel bakış açısı ile farklı çözüm yöntemleri önerir. | X | ||||
10 | Matematik temelli yazılımları, bilişim ve iletişim teknolojilerini bilimsel amaçlı kullanabilir. | X |
ECTS/İş Yükü Tablosu
Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
---|---|---|---|
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 3 | 48 |
Laboratuar | |||
Uygulama | |||
Derse Özgü Staj | |||
Alan Çalışması | |||
Sınıf Dışı Ders Çalışma Süresi | 14 | 3 | 42 |
Sunum/Seminer Hazırlama | |||
Projeler | |||
Raporlar | |||
Ödevler | 4 | 3 | 12 |
Küçük Sınavlar/Stüdyo Kritiği | |||
Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 1 | 10 | 10 |
Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 13 | 13 |
Toplam İş Yükü | 125 |