AKTS - Veri Analitiğinde Uygulamalı Makine Öğrenme
Veri Analitiğinde Uygulamalı Makine Öğrenme (SE573) Ders Detayları
Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
---|---|---|---|---|---|---|---|
Veri Analitiğinde Uygulamalı Makine Öğrenme | SE573 | Alan Seçmeli | 3 | 0 | 0 | 3 | 5 |
Ön Koşul Ders(ler)i |
---|
N/A |
Dersin Dili | İngilizce |
---|---|
Dersin Türü | Seçmeli Dersler |
Dersin Seviyesi | Fen Bilimleri Yüksek Lisans |
Ders Verilme Şekli | |
Dersin Öğrenme ve Öğretme Teknikleri | . |
Dersin Öğretmen(ler)i |
|
Dersin Amacı | |
Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler; |
Dersin İçeriği | Data istatistik hesapları; doğrusal ayırt edici analiz; karar verme ağaçları; yapay sinir ağları; Bayes öğrenme; veri mesafe ölçümleri; anlık ve takviyeli öğrenme; küme analizi; regresyon; destek vektör makinesi. |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|
Kaynaklar
Değerlendirme System
Çalışmalar | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | - | - |
Laboratuar | - | - |
Uygulama | - | - |
Alan Çalışması | - | - |
Derse Özgü Staj | - | - |
Küçük Sınavlar/Stüdyo Kritiği | - | - |
Ödevler | - | - |
Sunum | - | - |
Projeler | - | - |
Rapor | - | - |
Seminer | - | - |
Ara Sınavlar/Ara Juri | - | - |
Genel Sınav/Final Juri | - | - |
Toplam | 0 | 0 |
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | |
---|---|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 100 |
Toplam | 100 |
Kurs Kategorisi
Temel Meslek Dersleri | X |
---|---|
Uzmanlık/Alan Dersleri | |
Destek Dersleri | |
İletişim ve Yönetim Becerileri Dersleri | |
Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
# | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | İleri düzey hesaplama ve/veya bilişim bilgilerini yazılım mühendisliği problemlerini çözmede uygulama becerisi. | |||||
2 | Farklı teknolojiler, yazılım mimarileri ve yaşam-döngüsü yaklaşımları kullanarak çözümler geliştirmek. | |||||
3 | Bir yazılım sistemini, bileşenini, sürecini veya programını, modern teknikler ve yazılım mühendisliği uygulamalarına yönelik mühendislik araçlarını kullanarak, tasarlama, gerçekleştirme ve değerlendirme becerisi. | X | ||||
4 | Yazılım gereksinimlerini anlamak için, veri toplama, analiz etme ve yorumlama becerisi. | |||||
5 | Yazılım projeleri üzerindeki çalışmalar kapsamında ortaya çıkan problemler üzerinde etkin sözlü ve yazılı iletişim ve kritik düşünme becerileri. | X | ||||
6 | Bilim ve teknoloji alanındaki güncel gelişmeleri izlemede bilgiye erişim becerisi ve yazılım mühendisliği alanında bilimsel araştırma yapmak ve bir projeyi gerçekleştirmek. | |||||
7 | Yazılım Mühendisliği ile ilgili profesyonel, hukuksal, sosyal ve sorumluluklar konularında anlayış. | |||||
8 | Proje ve risk yönetim becerisi; girişimciliğin, yenilikçilik ve sürdürülebilir kalkınmanın önemi hakkında farkındalık; uluslararası standartların ve yöntemlerin bilinmesi. | |||||
9 | Yazılım Mühendisliği çözümlerinin, karar verme boyutunda, küresel, sosyal ve hukuki boyutları üzerindeki etkisini anlamak. | |||||
10 | Yazılım Mühendisliği uygulamaları için mükemmellik standartlarının geliştirilmesi, benimsenmesi ve sürekli kullanımının desteklenmesi. |
ECTS/İş Yükü Tablosu
Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
---|---|---|---|
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 3 | 48 |
Laboratuar | |||
Uygulama | |||
Derse Özgü Staj | |||
Alan Çalışması | |||
Sınıf Dışı Ders Çalışma Süresi | 16 | 3 | 48 |
Sunum/Seminer Hazırlama | |||
Projeler | |||
Raporlar | |||
Ödevler | 8 | 2 | 16 |
Küçük Sınavlar/Stüdyo Kritiği | |||
Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 2 | 4 | 8 |
Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 5 | 5 |
Toplam İş Yükü | 125 |