AKTS - Mühendisler için Makine Öğrenmesi

Mühendisler için Makine Öğrenmesi (CMPE468) Ders Detayları

Ders Adı Ders Kodu Dönemi Saati Uygulama Saati Laboratuar Hours Kredi AKTS
Mühendisler için Makine Öğrenmesi CMPE468 Alan Seçmeli 3 0 0 3 5
Ön Koşul Ders(ler)i
N/A
Dersin Dili İngilizce
Dersin Türü Seçmeli Dersler
Dersin Seviyesi Lisans
Ders Verilme Şekli Yüz Yüze
Dersin Öğrenme ve Öğretme Teknikleri Anlatım.
Dersin Koordinatörü
Dersin Öğretmen(ler)i
Dersin Asistan(lar)ı
Dersin Amacı Bu dersin amacı; Makine öğrenmesi kavramlarını, algoritmalarını ve bunların mühendislik alanına uygulanmasını ileri seviye kalkülüs, lineer cebir ve olasılık teorisi gerektirmeden sağlamak ve farklı disiplinlerden öğrenciler ile oluşturulan disiplinler arası takım çalışması ile bir proje geliştirme becerisinin kazandırılmasıdır.
Dersin Eğitim Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
  • Makine öğrenmesinin temel kavramları ve algoritmaları ile bunların uygulamalarını tanımlayabilmek
  • Makine öğrenmesi modellerini başarımını ölçmek ve parametre ayarlarını yapabilmek
  • Makine öğrenmesinde kullanılan algoritmaları belirli mühendislik problemlerine uygulayabilme
  • Farklı disiplinlerden öğrenciler ile oluşturulan disiplinler arası takım çalışması ile bir proje geliştirme
Dersin İçeriği Yapay zeka, makine öğrenmesi, denetimli ve denetimsiz öğrenme, ikili sınıflandırma, çoklu sınıflandırma, kestirim, kümeleme, modellerin başarımını ölçmek.

Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları

Hafta Konular Ön Hazırlık
1 Neden Makine öğrenmesi? İlk örnek uygulama: Iris çiçeğinin sınıflandırılması Ünite 1 (ana ders kitabı)
2 Denetimli öğrenme: Sınıflandırma ve Kestirim Ch. 2.1
3 K-En Yakın Komşular Algoritması Ch. 2.2
4 Lineer Modeller Ch. 2.3
5 Naive Bayes Sınıflandırıcı Ch. 2.4
6 Karar Ağaçları Ch. 2.5
7 Rastgele Ağaçlar Ch. 2.6
8 Destek Vektör Makineleri Ch. 2.7
9 Denetimsiz öğrenme Ch. 3.1
10 Kümeleme: K-Means Algoritması Ch. 3.5
11 Modellerini başarımını ölçmek: Çapraz doğrulama, birini-dışarıda-bırak, grid tarama Ch 5.1
12 Başarımın Ölçütleri ve Puanlaması Ch. 5.2
13 Proje sunumları
14 Proje Sunumları

Kaynaklar

Ders Kitabı 1. Introduction to Machine Learning with Python, A Guide for Data Scientists by Andreas C. Müller and Sarah Guido, O’Reilly Media, Inc, October 2016
Diğer Kaynaklar 3. Machine Learning 101, Data Science. Nov 26, 2018
4. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems / Aurelien Geron.
5. Introduction to Machine Learning, Ethem Alpaydin. MIT Press, 2014.
6. Orange web site, https://orange.biolab.si/

Değerlendirme System

Çalışmalar Sayı Katkı Payı
Devam/Katılım - -
Laboratuar - -
Uygulama - -
Alan Çalışması - -
Derse Özgü Staj - -
Küçük Sınavlar/Stüdyo Kritiği - -
Ödevler - -
Sunum - -
Projeler 1 30
Rapor - -
Seminer - -
Ara Sınavlar/Ara Juri 1 30
Genel Sınav/Final Juri 1 40
Toplam 3 100
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı 60
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı 40
Toplam 100

Kurs Kategorisi

Temel Meslek Dersleri X
Uzmanlık/Alan Dersleri
Destek Dersleri
İletişim ve Yönetim Becerileri Dersleri
Aktarılabilir Beceri Dersleri

Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi

# Program Yeterlilikleri / Çıktıları Katkı Düzeyi
1 2 3 4 5
1 Matematik, fen bilimleri ve mühendislik disiplinlerine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinin çözümünde kullanabilme becerisi.
2 Karmaşık mühendislik problemlerini tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi.
3 Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi.
4 Mühendislik uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi.
5 Karmaşık mühendislik problemlerinin veya mühendislik disiplinlerine özgü araştırma konularının incelenmesi için deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama becerisi.
6 Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi. X
7 (a) Effective oral and written communication skills; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly. (b) The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly in this foreign language. X
8 Yaşam boyu öğrenmenin gerekliliği konusunda farkındalık; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi.
9 Etik ilkelerine uygun davranma, mesleki ve etik sorumluluk ve mühendislik uygulamalarında kullanılan standartlar hakkında bilgi.
10 Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi. X
11 Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık.
12 (a) (i) Akışkanlar mekaniği, (ii) ısı transferi, (iii) üretim süreçleri, (iv) elektronik ve kontrol, (v) taşıt elemanları tasarımı, (vi) taşıt dinamiği, (vii) taşıt tahrik ve güç sistemleri, (viii) otomotiv alanındaki teknik mevzuat ve (ix) taşıt doğrulama testleri konularında bilgi. (b) Bu bilgilerin çok disiplinli otomotiv problemlerinin çözümüne yönelik olarak birleştirilmesi ve uygulanması becerisi.
13 Kuramsal, deneysel ve benzetim yöntemleri ile bilgisayar destekli tasarım tekniklerinin otomotiv mühendisliği alanında kullanımı becerisi.
14 Taşıt tasarımı ve imalatı alanlarında çalışabilme becerisi.

ECTS/İş Yükü Tablosu

Aktiviteler Sayı Süresi (Saat) Toplam İş Yükü
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) 16 3 48
Laboratuar
Uygulama
Derse Özgü Staj
Alan Çalışması
Sınıf Dışı Ders Çalışma Süresi 16 2 32
Sunum/Seminer Hazırlama
Projeler 1 10 10
Raporlar
Ödevler
Küçük Sınavlar/Stüdyo Kritiği
Ara Sınavlara/Ara Juriye Hazırlanma Süresi 1 10 10
Genel Sınava/Genel Juriye Hazırlanma Süresi 1 15 15
Toplam İş Yükü 115