AKTS - Operatör Teorisi
Operatör Teorisi (MATH658) Ders Detayları
Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
---|---|---|---|---|---|---|---|
Operatör Teorisi | MATH658 | Alan Seçmeli | 3 | 0 | 0 | 3 | 5 |
Ön Koşul Ders(ler)i |
---|
N/A |
Dersin Dili | İngilizce |
---|---|
Dersin Türü | Seçmeli Dersler |
Dersin Seviyesi | Fen Bilimleri Yüksek Lisans |
Ders Verilme Şekli | Yüz Yüze |
Dersin Öğrenme ve Öğretme Teknikleri | Anlatım, Tartışma, Soru Yanıt. |
Dersin Öğretmen(ler)i |
|
Dersin Amacı | Bu ders Operatör Teorisi ve uygulamalarına yönelik bir giriş dersidir. Ders içinde Banach ve Hilbert Uzayları ve bu uzayların doğrusal sınırlı operatörleri kısaca tekrarlanacak, daha sonra da bu operatörlerin Spektral Teorisi tartışılacaktır. Özeşlenik ve pozitif operatörler gibi uygulamalarda sıklıkla karşılaşılan Hilbert Uzayı operatörleri ayrıntılı olarak işlenecektir. Bu ders Analiz ve uygulamaları konularında ilerlemek isteyen Matematik Bölümü öğrencilerine yöneliktir, ancak diğer alanlardan Matematik öğrencileri ve Mühendislik Matematiği’nde gördükleri bir çok konunun matematiksel temellerini anlamak isteyen lisansüstü mühendislik öğrencilerinin de katılımına açıktır. |
Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Dersin İçeriği | Bu ders Operatör Teorisi ve uygulamalarına yönelik bir giriş dersidir. Ders içinde Banach ve Hilbert Uzayları ve bu uzayların doğrusal sınırlı operatörleri kısaca tekrarlanacak, daha sonra da bu operatörlerin Spektral Teorisi tartışılacaktır. Özeşlenik ve pozitif operatörler gibi uygulamalarda sıklıkla karşılaşılan Hilbert Uzayı operatörleri ayrıntılı olarak işlenecektir. |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Normlu Uzay ve Banach Uzaylarının tekrarı | [1], 2.2, 2.6, 2.7 [2], 3.1 |
2 | Normlu uzayların sınırlı operatörleri | [1], 2.7 [2], 4.3 |
3 | İç Çarpım Uzayları ve Hilbert Uzaylarının tekrarı | [1], 3.1,3.3,3.4 [2], 2.2—2.5 |
4 | Hilbert Eşlenik Operatörü | [1], 3.8,3.9 |
5 | Normlu Uzayların Spektral Teorisi: Giriş | [1], 7.2 |
6 | Sınırlı Doğrusal Operatörlerin Spektral Teorisi | [1], 7.3 |
7 | Spektral Gönderim Teoremi | [1], 7.4 |
8 | Tekrar ve Ara Sınav | |
9 | Sınırlı Özeşlenik Operatörlerin Spektral Teorisi | [1], 9.1 |
10 | Sınırlı Özeşlenik Operatörlerin Spektral Teorisi | [1], 9.2 |
11 | Pozitif Operatörler | [1], 9.3 |
12 | Pozitif Operatörlerin Karekökleri | [1], 9.4 |
13 | Projeksiyon Operatörleri | [1], 9.5 |
14 | Projeksiyon Operatörlerinin Özellikleri | [1], 9.6 |
15 | Projeksiyon Operatörlerinin Özellikleri | [1], 9.6 |
16 | Tekrar |
Kaynaklar
Ders Kitabı | 1. E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Clas. Lib. Ed, 1989. |
---|---|
2. G. Chacón, H. Rafeiro, J. Vallejo, Functional Analysis, De Gruyter, 2017. |
Değerlendirme System
Çalışmalar | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | - | - |
Laboratuar | - | - |
Uygulama | - | - |
Alan Çalışması | - | - |
Derse Özgü Staj | - | - |
Küçük Sınavlar/Stüdyo Kritiği | - | - |
Ödevler | 3 | 30 |
Sunum | 1 | 20 |
Projeler | - | - |
Rapor | - | - |
Seminer | - | - |
Ara Sınavlar/Ara Juri | 1 | 20 |
Genel Sınav/Final Juri | 1 | 30 |
Toplam | 6 | 100 |
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | 70 |
---|---|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 30 |
Toplam | 100 |
Kurs Kategorisi
Temel Meslek Dersleri | X |
---|---|
Uzmanlık/Alan Dersleri | |
Destek Dersleri | |
İletişim ve Yönetim Becerileri Dersleri | |
Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
# | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Lisans öğreniminden elde edilen yeterlilikleri temel alarak, aynı ya da farklı bir alandaki bilgileri geliştirebilme ve derinleştirebilme yeteneğine sahip olur. | X | ||||
2 | Bilimsel araştırma yaparak bilgiye ulaşabilme, bilgiyi değerlendirme, yorumlama ve uygulama becerisine sahip olur. | X | ||||
3 | Alanında özümsediği bilgiyi ve problem çözme yeteneğini disiplinlerarası çalışmalarda uygulayabilir. | X | ||||
4 | Alanında, bağımsız olarak, bir problem kurgulayabilir, çözüm yöntemi geliştirerek problemi çözebilir ve sonuçları değerlendirebilir. | X | ||||
5 | Alanındaki çalışmalarda karşılaşabileceği öngörülemeyen karmaşık durumlarda, çözümün üretilmesine yönelik sistematik yaklaşımların geliştirilmesinde bireysel ve ekip üyesi olarak sorumluluk alır. | X | ||||
6 | Alanı ile ilgili konularda strateji, uygulama planları ve prensipler geliştirerek elde edilen sonuçları, kalite süreçleri çerçevesinde değerlendirebilir. | X | ||||
7 | Alanındaki bilgiyi geliştirerek bunları bilimsel, toplumsal ve etik sorumluluk ile kullanır. | X | ||||
8 | Alanı ile ilgili güncel gelişmeleri inceleyerek, kendi çalışmalarını bilimsel verilerle destekler, alanındaki ve alanı dışındaki gruplara, yazılı, sözlü ve görsel olarak sistemli bir şekilde sunma becerisine sahip olur. | X | ||||
9 | Matematik veya uygulama alanlarındaki bilimsel çalışmaları takip ederek araştırma yapacak ve meslektaşları ile sözlü ve yazılı iletişim kuracak düzeyde İngilizce bilir. | X | ||||
10 | Matematik temelli yazılımları, bilişim ve iletişim teknolojilerini bilimsel amaçlı kullanabilir. | X | ||||
11 | Matematik veya uygulama alanları ile ilgili verilerin toplanması, yorumlanması, uygulanması ve sonuçların duyurulması aşamalarında evrensel ve toplumsal boyutlardaki etkilerini dikkate alan mesleki etik ve sorumluluk bilincine sahip olur. | X |
ECTS/İş Yükü Tablosu
Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
---|---|---|---|
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 3 | 48 |
Laboratuar | |||
Uygulama | |||
Derse Özgü Staj | |||
Alan Çalışması | |||
Sınıf Dışı Ders Çalışma Süresi | 14 | 2 | 28 |
Sunum/Seminer Hazırlama | 1 | 10 | 10 |
Projeler | |||
Raporlar | |||
Ödevler | 3 | 5 | 15 |
Küçük Sınavlar/Stüdyo Kritiği | |||
Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 1 | 12 | 12 |
Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 12 | 12 |
Toplam İş Yükü | 125 |