AKTS - Topoloji
Topoloji (MATH571) Ders Detayları
Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
---|---|---|---|---|---|---|---|
Topoloji | MATH571 | Alan Seçmeli | 3 | 0 | 0 | 3 | 5 |
Ön Koşul Ders(ler)i |
---|
N/A |
Dersin Dili | İngilizce |
---|---|
Dersin Türü | Seçmeli Dersler |
Dersin Seviyesi | Fen Bilimleri Yüksek Lisans |
Ders Verilme Şekli | Yüz Yüze |
Dersin Öğrenme ve Öğretme Teknikleri | Anlatım, Tartışma, Soru Yanıt. |
Dersin Öğretmen(ler)i |
|
Dersin Amacı | Bu ders, matematik yüksek lisans öğrencileri topoloji konusunda gerekli alt yapıyı oluşturmak ve daha ileri düzeyde bilgi sağlamak için tasarlanmıştır. Bu dersin içeriği, analiz, geometri, cebirsel ve geometrik topoloji konularında çalışma yapmak için temellerini atmaya bir araç olur |
Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Dersin İçeriği | Topolojik uzaylar, homeomorfizmler ve homotopi, çarpım ve bölüm topolojileri, ayırma aksiyomları, kompaktlık, bağlantılılık, metrik uzaylar ve metriklenebilirlik, örtü uzayları, temel gruplar, Euler karakteristik, yüzeylerin sınıflandırılması, yüzeylerin homolojileri, geometri ve analize örnek basit uygulamalar. |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Metrik Uzaylar, Topolojik Uzaylar, Altuzaylar, Bağlantılılık ve Bileşenleri, Kompaktlık | s. 1-14, 18-22 |
2 | Çarpımlar, Daha fazla Metrik Uzaylar, Reel Değerli Fonksiyonların Varlığı, Yerel Kompakt Uzaylar, Kompakt Uzaylar, Parakompakt Uzaylar | s. 22-39 |
3 | Bölüm Uzayları, Homotopi, Homotopi Grupları | s. 39-51, 127-132 |
4 | Temel Grup, Örtü Uzayları | s. 132-143 |
5 | Kaldırma Teoremi, Kat Dönüşümleri | s. 143-150 |
6 | Öz Süreksiz Hareketler, Örtü Uzaylarının Sınıflandırılması, Seifert-Van Kampen Teoremi | s. 150-164 |
7 | Homoloji Grupları, Sıfırıncı Homoloji Grubu, Birinci Homoloji Grubu | s. 168-175 |
8 | Funktorel Özellikler, Homoloji Cebiri, Derecelerin Hesaplanması | s. 175-194 |
9 | Arasınav | |
10 | CW-Kompleksler, Hücresel Homoloji | s. 194-207 |
11 | Hücresel Dönüşümler, Euler Formülü, Tekil Homoloji | s. 207-211, 215-217, 219-220 |
12 | Çapraz Çarpım, Altbölme, Mayer-Vietoris Dizisi | s. 220-230 |
13 | Borsuk-Ulam Teoremi, Simpleksel Kompleksler | s. 240-250 |
14 | Simpleksel Dönüşümler | s. 250-253 |
15 | Lefschetz-Hopf Sabit Nokta Teoremi | s. 253-259 |
16 | Genel Sınav |
Kaynaklar
Ders Kitabı | 1. Glen E. Bredon, Topology and Geometry, Springer-Verlag, NY, 1993. |
---|---|
Diğer Kaynaklar | 2. J.R. Munkres, Topology, Second Edition, Prentice Hall, NJ, 2000. |
3. A. Hatcher, Algebraic Topology, Cambridge University Press, 2002. |
Değerlendirme System
Çalışmalar | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | - | - |
Laboratuar | - | - |
Uygulama | - | - |
Alan Çalışması | - | - |
Derse Özgü Staj | - | - |
Küçük Sınavlar/Stüdyo Kritiği | - | - |
Ödevler | 5 | 30 |
Sunum | - | - |
Projeler | - | - |
Rapor | - | - |
Seminer | - | - |
Ara Sınavlar/Ara Juri | 1 | 30 |
Genel Sınav/Final Juri | 1 | 40 |
Toplam | 7 | 100 |
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | 60 |
---|---|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 40 |
Toplam | 100 |
Kurs Kategorisi
Temel Meslek Dersleri | |
---|---|
Uzmanlık/Alan Dersleri | |
Destek Dersleri | X |
İletişim ve Yönetim Becerileri Dersleri | |
Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
# | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Lisans öğreniminden elde edilen yeterlilikleri temel alarak, aynı ya da farklı bir alandaki bilgileri geliştirebilme ve derinleştirebilme yeteneğine sahip olur. | X | ||||
2 | Bilimsel araştırma yaparak bilgiye ulaşabilme, bilgiyi değerlendirme, yorumlama ve uygulama becerisine sahip olur. | X | ||||
3 | Alanında özümsediği bilgiyi ve problem çözme yeteneğini disiplinlerarası çalışmalarda uygulayabilir. | X | ||||
4 | Alanında, bağımsız olarak, bir problem kurgulayabilir, çözüm yöntemi geliştirerek problemi çözebilir ve sonuçları değerlendirebilir. | X | ||||
5 | Alanındaki çalışmalarda karşılaşabileceği öngörülemeyen karmaşık durumlarda, çözümün üretilmesine yönelik sistematik yaklaşımların geliştirilmesinde bireysel ve ekip üyesi olarak sorumluluk alır. | X | ||||
6 | Alanı ile ilgili konularda strateji, uygulama planları ve prensipler geliştirerek elde edilen sonuçları, kalite süreçleri çerçevesinde değerlendirebilir. | X | ||||
7 | Alanındaki bilgiyi geliştirerek bunları bilimsel, toplumsal ve etik sorumluluk ile kullanır. | X | ||||
8 | Alanı ile ilgili güncel gelişmeleri inceleyerek, kendi çalışmalarını bilimsel verilerle destekler, alanındaki ve alanı dışındaki gruplara, yazılı, sözlü ve görsel olarak sistemli bir şekilde sunma becerisine sahip olur. | X | ||||
9 | Matematik veya uygulama alanlarındaki bilimsel çalışmaları takip ederek araştırma yapacak ve meslektaşları ile sözlü ve yazılı iletişim kuracak düzeyde İngilizce bilir. | X | ||||
10 | Matematik temelli yazılımları, bilişim ve iletişim teknolojilerini bilimsel amaçlı kullanabilir. | X | ||||
11 | Matematik veya uygulama alanları ile ilgili verilerin toplanması, yorumlanması, uygulanması ve sonuçların duyurulması aşamalarında evrensel ve toplumsal boyutlardaki etkilerini dikkate alan mesleki etik ve sorumluluk bilincine sahip olur. | X |
ECTS/İş Yükü Tablosu
Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
---|---|---|---|
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | |||
Laboratuar | |||
Uygulama | |||
Derse Özgü Staj | |||
Alan Çalışması | |||
Sınıf Dışı Ders Çalışma Süresi | 14 | 3 | 42 |
Sunum/Seminer Hazırlama | |||
Projeler | |||
Raporlar | |||
Ödevler | 5 | 3 | 15 |
Küçük Sınavlar/Stüdyo Kritiği | |||
Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 1 | 10 | 10 |
Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 10 | 10 |
Toplam İş Yükü | 77 |