AKTS - Uyarlanır Sistemler and Sinyal İşleme
Uyarlanır Sistemler and Sinyal İşleme (EE424) Ders Detayları
Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
---|---|---|---|---|---|---|---|
Uyarlanır Sistemler and Sinyal İşleme | EE424 | Alan Seçmeli | 3 | 0 | 0 | 3 | 5 |
Ön Koşul Ders(ler)i |
---|
EE303 ve EE306 |
Dersin Dili | İngilizce |
---|---|
Dersin Türü | Seçmeli Dersler |
Dersin Seviyesi | Lisans |
Ders Verilme Şekli | Yüz Yüze |
Dersin Öğrenme ve Öğretme Teknikleri | Anlatım, Gösteri, Tartışma, Soru Yanıt, Uygulama-Alıştırma, Beyin Fırtınası. |
Dersin Öğretmen(ler)i |
|
Dersin Amacı | •Uyarlanır süzme uygulamalarını, yapılarını, algoritmalarını ve başarımlarını anlamak. •Uyarlanır süzgeçlemenin uygulanabildiği yerdeki problem sınıflarını tanımlamak. •LMS ve RLS uyarlama algoritmalarının gerçekleştirilmesini tanımlamak. •Kalman süzgeçleme ve ileri yöndeki geri yöndeki algoritmanın temel krallarını sunmak. |
Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Dersin İçeriği | Uyarlanır süzme uygulamaları, özbağlanımlı yürüyen ortalamalı süreçler, doğrusal öngörü, kafes süzgeçler, en küçük ortalama karesel (LMS) algoritmalar, en küçük karelerle süzgeçleme, yakınsaklık analizi, özyineli en küçük kareler (RLS) kestirimi, Kalman süzgeçler. |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Uyarlanır Süzme: Tanıma, Ters Modelleme, Öngörü, Girişim Giderme | Bu haftanın konularına göz atmak |
2 | Doğrusal Optimum Süzme: Wiener Süzgeçler | Bir önceki haftanın konularını tekrar etmek ve bu haftanın konularına göz atmak |
3 | Doğrusal Öngörü: İleri yönde Doğrusal Öngörü, Geri yönde Doğrusal Öngörü, Levinson-Durbin Algoritması | Bu haftanın konularına göz atmak |
4 | Doğrusal Öngörü: Kafes Süzgeçler | Bir önceki haftanın konularını tekrar etmek ve bu haftanın konularına göz atmak |
5 | Gradyan Tabanlı Uyarlama: En dip İniş Algoritması | Bu haftanın konularına göz atmak |
6 | Stokastic Gradyan Tabanlı Uyarlama: En Küçük Ortalama Karesel (LMS) Algoritması | Bu haftanın konularına göz atmak |
7 | LMS Algoritması | Bir önceki haftanın konularını tekrar etmek ve bu haftanın konularına göz atmak |
8 | LMS Algorimasının Türleri: Düzgelenmiş LMS (NLMS) Algoritması | Bir önceki haftanın konularını tekrar etmek ve bu haftanın konularına göz atmak |
9 | Frekans Alanı ve Altbant Uyarlanır Süzgeçler | Bu haftanın konularına göz atmak |
10 | Frekans Alanı ve Altbant Uyarlanır Süzgeçler | Bir önceki haftanın konularını tekrar etmek ve bu haftanın konularına göz atmak |
11 | Doğrusal En Küçük Karelerle (LS) Süzme: Doğrusal LS Kestirim Problemi; Olağan Denklemler ve LS Süzgeçler; En Küçük Karesel Kestirimlerin Özellikleri; Tekil Değer Ayrışımı | Bu haftanın konularına göz atmak |
12 | Özyineli en küçük kareler (RLS) kestirimi: Üstsel Ağırlıklı En Küçük Kareler; Zaman Çözümünde Özyineleme; Algoritmanın ilk kullanıma hazırlanması; MSE kriteri için Özyineleme; Uygulamalar: Gürültü Gidericiler, Kanal Denkleştirme, Yankı Giderimi | Bu haftanın konularına göz atmak |
13 | Kalman Süzgeçler: Kalman Süzme Probleminin ifade edilmesi; Yenilik Süreci; Durum Kestirimi; Süzme; Başlangıç Şartları; Genişletilmiş Kalman Süzgeci | Bu haftanın konularına göz atmak |
14 | Kalman Süzgeçler | Bir önceki haftanın konularını tekrar etmek ve bu haftanın konularına göz atmak |
15 | Dönem sonu sınav çalışmaları | Dönem içi konuların tekrarı |
16 | Dönem sonu sınav çalışmaları | Dönem içi konuların tekrarı |
Kaynaklar
Ders Kitabı | 1. Adaptive Filter Theory, S.Haykin, 4th Edition, Prentice Hall, 2002 |
---|---|
Diğer Kaynaklar | 2. Adaptive Signal Processing, B.Widrow and S.Stearns, Prentice Hall, 1985 |
Değerlendirme System
Çalışmalar | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | - | - |
Laboratuar | - | - |
Uygulama | - | - |
Alan Çalışması | - | - |
Derse Özgü Staj | - | - |
Küçük Sınavlar/Stüdyo Kritiği | - | - |
Ödevler | 15 | 15 |
Sunum | - | - |
Projeler | 1 | 15 |
Rapor | - | - |
Seminer | - | - |
Ara Sınavlar/Ara Juri | 2 | 40 |
Genel Sınav/Final Juri | 1 | 30 |
Toplam | 19 | 100 |
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | 70 |
---|---|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 30 |
Toplam | 100 |
Kurs Kategorisi
Temel Meslek Dersleri | X |
---|---|
Uzmanlık/Alan Dersleri | |
Destek Dersleri | |
İletişim ve Yönetim Becerileri Dersleri | |
Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
# | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Matematik, fen bilimleri ve Elektrik-Elektronik Mühendisliği disiplinine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinin çözümünde kullanabilme becerisi. | X | ||||
2 | Karmaşık mühendislik problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi. | X | ||||
3 | Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi. (Gerçekçi kısıtlar ve koşullar tasarımın niteliğine göre, ekonomi, çevre sorunları, sürdürülebilirlik, üretilebilirlik, etik, sağlık, güvenlik, sosyal ve politik sorunlar gibi ögeleri içerirler.) | X | ||||
4 | Mühendislik uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi. | X | ||||
5 | Karmaşık mühendislik problemlerinin veya disipline özgü araştırma konularının incelenmesi için deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama becerisi. | X | ||||
6 | Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi. | X | ||||
7 | Sözlü ve yazılı etkin iletişim kurma becerisi; en az bir yabancı dil bilgisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. | X | ||||
8 | Yaşam boyu öğrenmenin gerekliliği konusunda farkındalık; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi. | X | ||||
9 | Etik ilkelerine uygun davranma, mesleki ve etik sorumluluk ve mühendislik uygulamalarında kullanılan standartlar hakkında bilgi. | X | ||||
10 | Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi. | X | ||||
11 | Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık. | X |
ECTS/İş Yükü Tablosu
Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
---|---|---|---|
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 3 | 48 |
Laboratuar | |||
Uygulama | |||
Derse Özgü Staj | |||
Alan Çalışması | |||
Sınıf Dışı Ders Çalışma Süresi | 16 | 2 | 32 |
Sunum/Seminer Hazırlama | |||
Projeler | 1 | 10 | 10 |
Raporlar | |||
Ödevler | 6 | 3 | 18 |
Küçük Sınavlar/Stüdyo Kritiği | |||
Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 2 | 6 | 12 |
Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 3 | 3 |
Toplam İş Yükü | 123 |