AKTS - Veri Biliminde Eniyileme
Veri Biliminde Eniyileme (IE441) Ders Detayları
Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
---|---|---|---|---|---|---|---|
Veri Biliminde Eniyileme | IE441 | Alan Seçmeli | 3 | 0 | 0 | 3 | 5 |
Ön Koşul Ders(ler)i |
---|
N/A |
Dersin Dili | İngilizce |
---|---|
Dersin Türü | Seçmeli Dersler |
Dersin Seviyesi | Fen Bilimleri Yüksek Lisans |
Ders Verilme Şekli | Yüz Yüze |
Dersin Öğrenme ve Öğretme Teknikleri | Anlatım, Soru Yanıt. |
Dersin Öğretmen(ler)i |
|
Dersin Amacı | Bu dersin amacı, Ar-Ge çalışmalarını azami oranda desteklemek üzere teknoloji, ürün, süreç ve sistemin yaşam döngülerini tanıtmaktır. Mevcut bilimden daha fazla bilim ve mevcut teknolojiden daha fazla teknoloji üretilmesi hedeflenmektedir. Bir ülkeyi kendine güvenen, güçlü ve teknoloji gelişmiş bir ülke yapmaya karar vererek milli savunma, milli kalkınma ve ekonomik büyüme için gerekli araçlar ve mesleki kariyer süresince karşılaşılan teknoloji yönetimi sorunları ve aşağıda belirtilen ders içeriği ile birlikte küreselleşme ele alınmaktadır. |
Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Dersin İçeriği | Doğrusal cebir, olasılık, ve istatistik tekrarı ile veri biliminde doğrusal programlama, tamsayılı programlama, karma tamsayılı programlama, doğrusal olmayan programlama uygulamaları, Python diline giriş ve çeşitli Python kütüphanelerinin veri bilimi problemlerinde kullanımı. |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | İlk toplantı - Müfredat tanıtımı | |
2 | Lineer cebir ve olasılık gözden geçirme | |
3 | Lineer cebir ve olasılık gözden geçirme | |
4 | Lineer cebir ve olasılık gözden geçirme | |
5 | Lineer cebir ve olasılık gözden geçirme | |
6 | Tamsayı ve karışık tamsayı programlama uygulamaları | |
7 | Tamsayı ve karışık tamsayı programlama uygulamaları | |
8 | Tamsayı ve karışık tamsayı programlama uygulamaları | |
9 | Ara Sınav | |
10 | Doğrusal olmayan programlama uygulamaları | |
11 | Doğrusal olmayan programlama uygulamaları | |
12 | Doğrusal olmayan programlama uygulamaları | |
13 | Sinir ağları | |
14 | Sinir ağları | |
15 | Sinir ağları | |
16 | Dersin gözden geçirilmesi |
Kaynaklar
Ders Kitabı | 1. Mathematics for Machine Learning, M.P. Deisenroth, A.A. Faisal, C.S. Ong, Cambridge University Press, 2020. |
---|---|
Diğer Kaynaklar | 2. A.C. Müller, S. Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists, 1 st Edition, O'Reilly Media, 2016. |
Değerlendirme System
Çalışmalar | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | - | - |
Laboratuar | - | - |
Uygulama | - | - |
Alan Çalışması | - | - |
Derse Özgü Staj | - | - |
Küçük Sınavlar/Stüdyo Kritiği | - | - |
Ödevler | - | - |
Sunum | 1 | 15 |
Projeler | 1 | 25 |
Rapor | - | - |
Seminer | - | - |
Ara Sınavlar/Ara Juri | 1 | 25 |
Genel Sınav/Final Juri | 1 | 35 |
Toplam | 4 | 100 |
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | |
---|---|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 100 |
Toplam | 100 |
Kurs Kategorisi
Temel Meslek Dersleri | X |
---|---|
Uzmanlık/Alan Dersleri | |
Destek Dersleri | |
İletişim ve Yönetim Becerileri Dersleri | |
Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
# | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Matematik, fen ve mühendislik bilgilerini kullanma becerisi | |||||
2 | Karmaşık mühendislik problemlerini saptama, formüle etme ve çözme becerisi | X | ||||
3 | Sistem entegrasyonunu sağlama becerisi | |||||
4 | Karmaşık sistemleri, bileşenleri ve süreçleri tasarlama, geliştirilme, uygulama ve iyileştirme becerisi | |||||
5 | Modern mühendislik teknik ve araçlarını seçme/geliştirme ve kullanma becerisi | X | ||||
6 | Deney tasarlama/uygulama ve veri toplama/analizi yorumlama becerisi | X | ||||
7 | Bireysel olarak ve takımlarda çalışma becerisi | |||||
8 | İletişim yeteneklerini etkin kullanım becerisi | |||||
9 | Yaşam boyu öğrenmenin gerekliliğinin bilincinde olma ve kendini sürekli yenileme becerisi | |||||
10 | Mesleki etik sorumluluk bilincine sahip olma ve gereğini uygulama becerisi | |||||
11 | Mühendislik çözümlerinin etkilerini algılama becerisi | |||||
12 | Güncel gelişmeler hakkında bilgi sahibi olma becerisi |
ECTS/İş Yükü Tablosu
Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
---|---|---|---|
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 3 | 48 |
Laboratuar | |||
Uygulama | |||
Derse Özgü Staj | |||
Alan Çalışması | |||
Sınıf Dışı Ders Çalışma Süresi | 14 | 2 | 28 |
Sunum/Seminer Hazırlama | 1 | 4 | 4 |
Projeler | 1 | 20 | 20 |
Raporlar | |||
Ödevler | |||
Küçük Sınavlar/Stüdyo Kritiği | |||
Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 1 | 10 | 10 |
Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 15 | 15 |
Toplam İş Yükü | 125 |