AKTS - Makine Öğrenmesi

Makine Öğrenmesi (CMPE565) Ders Detayları

Ders Adı Ders Kodu Dönemi Saati Uygulama Saati Laboratuar Hours Kredi AKTS
Makine Öğrenmesi CMPE565 Alan Seçmeli 3 0 0 3 5
Ön Koşul Ders(ler)i
N/A
Dersin Dili İngilizce
Dersin Türü Seçmeli Dersler
Dersin Seviyesi Doktora
Ders Verilme Şekli Yüz Yüze
Dersin Öğrenme ve Öğretme Teknikleri Anlatım.
Dersin Koordinatörü
Dersin Öğretmen(ler)i
Dersin Asistan(lar)ı
Dersin Amacı Dersin amacı makine öğrenmesi kavramlarını ve algoritmalarını öğretmektir.
Dersin Eğitim Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
  • Makine öğrenmesi kavramlarını ve algoritmalarını açıklayabilme.
  • Makine öğrenme sistemi tasarlayabilme, geliştirme ve test edebilme.
  • Verilen probleme göre optimal makine öğrenmesi algoritmasını seçebilme.
Dersin İçeriği Kavram öğrenmesi, karar ağaçları öğrenmesi, yapay sinir ağları, hipotezleri değerlendirme, Bayes öğrenmesi, bilişimsel öğrenme kuramı, durum-tabanlı öğrenme, genetik algoritmalar, analitik öğrenme, pekiştirme ile öğrenme.

Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları

Hafta Konular Ön Hazırlık
1 Giriş Bölüm 1 (Ders Kitabı)
2 Kavram Öğrenmesi ve Genelden Özele Sıralama Bölüm 2
3 Karar Ağaçları Öğrenmesi, Bölüm 3
4 Yapay Sinir Ağları Bölüm 4
5 Hipotezleri Değerlendirme Bölüm 5
6 Bayes Öğrenmesi Bölüm 6
7 Bilişimsel Öğrenme Kuramı Bölüm 7
8 Durum-tabanlı Öğrenme Bölüm 8
9 Genetik Algoritmalar Bölüm 9
10 Kural Setlerini Öğrenme Bölüm 10
11 Analitik Öğrenme Bölüm 11
12 Tümevarımsal ve Analitik Öğrenmenin Birleştirilmesi Bölüm 12
13 Pekiştirme ile Öğrenme Bölüm 13
14 Pekiştirme ile Öğrenme Bölüm 13
15 Gözden geçirme
16 Gözden geçirme

Kaynaklar

Ders Kitabı 1. T.M. Mitchell, Machine Learning, McGraw-Hill, 1997
Diğer Kaynaklar 2. E. Alpaydin, Introduction to Machine Learning, MIT Press, 2004.

Değerlendirme System

Çalışmalar Sayı Katkı Payı
Devam/Katılım - -
Laboratuar - -
Uygulama - -
Alan Çalışması - -
Derse Özgü Staj - -
Küçük Sınavlar/Stüdyo Kritiği - -
Ödevler 2 25
Sunum - -
Projeler - -
Rapor - -
Seminer - -
Ara Sınavlar/Ara Juri 1 35
Genel Sınav/Final Juri 1 40
Toplam 4 100
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı 60
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı 40
Toplam 100

Kurs Kategorisi

Temel Meslek Dersleri X
Uzmanlık/Alan Dersleri
Destek Dersleri
İletişim ve Yönetim Becerileri Dersleri
Aktarılabilir Beceri Dersleri

Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi

# Program Yeterlilikleri / Çıktıları Katkı Düzeyi
1 2 3 4 5
1 Bireysel ve ekip üyesi olarak ileri düzey araştırma faaliyetlerini yürütme yeteneği
2 Araştırma konularını irdeleme, değerlendirme ve bilimsel muhakeme ile yorumlama yeteneği
3 Yeni yöntemler oluşturma ve bunları özgün araştırma alanları ve konularına uygulama becerisi
4 Deneysel ve/veya analitik verileri sistematik şekilde elde etme, bunları bilimsel sonuçlara ulaşacak şekilde tartışma ve değerlendirme yeteneği
5 Bilimsel felsefe yaklaşımını mühendislik sistemlerinin analiz, modelleme ve tasarımında uygulayabilme becerisi
6 Çalışmış olduğu sahadaki bilgiyi uluslararası düzeyde özgün çalışmaları oluşturacak, sürdürecek, tamamlayacak ve sunacak şekilde sentezleme yeteneği
7 Çalıştığı mühendislik alanında bilimsel ve teknolojik gelişmelere katkıda bulunma
8 Toplumu araştırma faaliyetleri aracılığıyla geliştirmek için endüstriyel ve bilimsel ilerlemelere katkıda bulunma

ECTS/İş Yükü Tablosu

Aktiviteler Sayı Süresi (Saat) Toplam İş Yükü
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) 16 3 48
Laboratuar
Uygulama
Derse Özgü Staj
Alan Çalışması
Sınıf Dışı Ders Çalışma Süresi 16 2 32
Sunum/Seminer Hazırlama
Projeler
Raporlar
Ödevler 2 5 10
Küçük Sınavlar/Stüdyo Kritiği
Ara Sınavlara/Ara Juriye Hazırlanma Süresi 1 15 15
Genel Sınava/Genel Juriye Hazırlanma Süresi 1 20 20
Toplam İş Yükü 125