AKTS - İleri Derin Öğrenme Teknikleri ve Uygulamaları
İleri Derin Öğrenme Teknikleri ve Uygulamaları (CMPE452) Ders Detayları
Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
---|---|---|---|---|---|---|---|
İleri Derin Öğrenme Teknikleri ve Uygulamaları | CMPE452 | Alan Seçmeli | 3 | 0 | 0 | 3 | 5 |
Ön Koşul Ders(ler)i |
---|
N/A |
Dersin Dili | İngilizce |
---|---|
Dersin Türü | Seçmeli Dersler |
Dersin Seviyesi | Lisans |
Ders Verilme Şekli | |
Dersin Öğrenme ve Öğretme Teknikleri | Anlatım, Soru Yanıt, Uygulama-Alıştırma, Sorun/Problem Çözme. |
Dersin Öğretmen(ler)i |
|
Dersin Amacı | Dersin amacı, öğrencileri derin öğrenme prensiplerini iyi bir şekilde anlamaları için yetiştirmek, bu sayede ileri düzey sinir ağı modellerini tasarlayıp uygulayabilmelerini ve değerlendirebilmelerini sağlamaktır. |
Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Dersin İçeriği | Yapay zekâ, makine öğrenimi ve derin öğrenme, sinir ağlarının matematiksel yapı taşları, denetimli öğrenme, geri yayılım, CNN'ler, nesne tanıma, görüntü segmentasyonu, özellik çıkarma, NLP, optimizasyon teknikleri |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Ders Tanıtımı, Makine Öğrenimine Giriş | Ders Kitabı – Böl. 1.1 |
2 | Sinir Ağlarına Giriş, Python ile Kodlama (Yapay Beyin Geliştirme) | Ders Kitabı – Böl. 2.1 |
3 | Derin Öğrenmeye Giriş | Ders Kitabı – Böl. 1.2, Böl. 1.3 |
4 | Denetimli Derin Öğrenme I, Denetimli Derin Öğrenme II | Ders Notları |
5 | Birinci Kısım: Geri Yayılım İkinci Kısım: Kaggle Veri Seti ile Derin Öğrenme Modeli Denemesi | Ders Kitabı – Böl. 2.2, Böl. 4.1, Böl. 4.2, Böl. 5.1 |
6 | Evrişimsel Ağların Teknik Gelişimi, Birden Çok Nesne Tanıma, Görsel Nesne Algılama ve Basit Nesne Tanıma için Evrişimsel Ağlar | Ders Kitabı – Böl. 3.1 |
7 | Ara Sınav | |
8 | Segmentasyon ve Görüş Tabanlı Navigasyon için ConvNet, Görüntü Segmentasyonu ve Sahne Etiketleme için Evrişimsel Ağlar, Gerçek Nesne Tanıma için Evrişimsel Ağlar | Ders Kitabı – Böl. 3.1 |
9 | Genel Özellik Çıkarıcılar olarak ConvNet'ler, Siyam Ağları ile Görüntü Benzerliği Eşleştirme, Stereo'dan Doğru Derinlik Tahmini, Vücut Pozu Tahmini, Görsel Proje Fikirleri, Konuşma, Ses ve Sinyallerde Derin Öğrenme ve Evrişimsel Ağ Örnekleri, Evrişimsel Ağlar için Yazılım Araçları ve Donanım Hızlandırma | Ders Kitabı – Böl. 3.1, Böl. 3.3 |
10 | Yapısal Tahmin ve Doğal Dil İşleme | Ders Kitabı – Böl. 8.1, Böl. 8.3 |
11 | Birinci Kısım: Daha Fazla Geri Yayılım İkinci Kısım: Yarı-denetimli Görüntü Tanıma | Ders Kitabı – Böl. 6.1, Böl. 6.2 |
12 | Optimizasyon Teknikleri, Aşırı Öğrenmeyi Azaltma, Başlangıç Ayarları | Ders Kitabı – Böl. 5.3, Böl. 9.1, Böl. 9.2 |
13 | Python ile Kodlama (Görüntü Segmentasyonu) | Deep Learning with Python, Second Edition by Francois Chollet – Böl. 9.2 |
14 | Uydu Görselleri ile Afet Risk İzleme | Ders Kitabı – Böl. 10.2, Böl. 10.3 |
15 | Ders Tekrarı | |
16 | Final Sınavı |
Kaynaklar
Ders Kitabı | 1. Understanding Deep Learning: Building Machine Learning Systems with PyTorch and TensorFlow by TransformaTech Institute, independently published Nov. 10, 2024. |
---|---|
Diğer Kaynaklar | 2. NVIDIA Deep Learning Institute: https://www.nvidia.com/en-us/training/ |
3. Deep Learning with Python, Second Edition by Francois Chollet, Publisher: Manning, Dec. 21, 2021. | |
4. Deep Learning by Ian Goodfellow, Publisher: The MIT Press, Nov. 18, 2016. | |
5. Neural Networks and Deep Learning: A Textbook by Charu C. Aggarwal, Publisher: Springer, Sep. 13, 2018. | |
6. PyTorch web page: https://pytorch.org/ & TensorFlow web page: https://www.tensorflow.org/ |
Değerlendirme System
Çalışmalar | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | - | - |
Laboratuar | - | - |
Uygulama | - | - |
Alan Çalışması | - | - |
Derse Özgü Staj | - | - |
Küçük Sınavlar/Stüdyo Kritiği | - | - |
Ödevler | 1 | 20 |
Sunum | - | - |
Projeler | - | - |
Rapor | - | - |
Seminer | - | - |
Ara Sınavlar/Ara Juri | 1 | 35 |
Genel Sınav/Final Juri | 1 | 45 |
Toplam | 3 | 100 |
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | 55 |
---|---|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 45 |
Toplam | 100 |
Kurs Kategorisi
Temel Meslek Dersleri | |
---|---|
Uzmanlık/Alan Dersleri | X |
Destek Dersleri | |
İletişim ve Yönetim Becerileri Dersleri | |
Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
# | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Matematik, fen bilimleri ve bilgisayar mühendisliği disiplinine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinde kullanabilme becerisi. | X | ||||
2 | Karmaşık mühendislik problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi. | X | ||||
3 | Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi. | X | ||||
4 | Bilgisayar mühendisliği uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları geliştirme, seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi. | X | ||||
5 | Karmaşık mühendislik problemlerinin veya bilgisayar mühendisliği disiplinine özgü araştırma konularının incelenmesi için deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama becerisi. | X | ||||
6 | Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi. | |||||
7 | Türkçe sözlü ve yazılı etkin iletişim kurma becerisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. | |||||
8 | En az bir yabancı dil bilgisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. | |||||
9 | Yaşam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi. | X | ||||
10 | Etik ilkelerine uygun davranma, mesleki ve etik sorumluluk bilinci; | |||||
11 | Bilgisayar mühendisliği uygulamalarında kullanılan standartlar hakkında bilgi. | X | ||||
12 | Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; | |||||
13 | Girişimcilik, yenilikçilik hakkında farkındalık; | |||||
14 | Sürdürülebilir kalkınma hakkında bilgi. | |||||
15 | Bilgisayar mühendisliği uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi; | |||||
16 | Mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık | |||||
17 | Sayısal hesaplama ve sayısal gösterim sistemlerini analiz, tasarım ve ifade becerisi. | X | ||||
18 | Hesaplama problemlerinin çözülmesinde programlama dillerini ve uygun bilgisayar mühendisliği kavramlarını kullanma becerisi. | X |
ECTS/İş Yükü Tablosu
Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
---|---|---|---|
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 3 | 48 |
Laboratuar | |||
Uygulama | |||
Derse Özgü Staj | |||
Alan Çalışması | |||
Sınıf Dışı Ders Çalışma Süresi | 16 | 2 | 32 |
Sunum/Seminer Hazırlama | |||
Projeler | |||
Raporlar | |||
Ödevler | 1 | 18 | 18 |
Küçük Sınavlar/Stüdyo Kritiği | |||
Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 1 | 12 | 12 |
Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 15 | 15 |
Toplam İş Yükü | 125 |