Courses
MDES600 - Research Methodology and Communication Skills (3 + 0) 5
Rigorous, scholarly research, particularly theses or dissertations. Literature review, surveys, meta-analysis, empirical research design, formulating research questions, theory building, qualitative and quantitative data collection and analysis methods, validity, reliability, triangulation, building evidences, writing research proposal
PHYS589 - Graduation Seminar (0 + 0) 5
Literature survey, article critique, writing research proposal, giving a seminar on thesis subject
PHYS597 - Master's Thesis (0 + 0) 80
Directed independent research based study on a topic approved by the student?s supervisor and the department chairman.
PHYS501 - Quantum Mechanics (3 + 0) 5
Fundamental concepts of quantum mechanics, quantum dynamics, theory of angular momentum, symmetry in quantum mechanics, approximation methods.
PHYS502 - Electromagnetic Theory (3 + 0) 5
Vector analysis and vector algebra; electrostatics, the electric field, electric potential, conductors; potentials, Laplace?s Equation, method of images, multipole expansion; polarization; magnetostatics, magnetic vector potential, magnetic fields in matter; electrodynamics, Maxwell?s equations, conservation laws; electromagnetic waves, waves in
PHYS503 - Mathematical Methods in Physics (3 + 0) 5
Functions of complex variables, Cauchy?s integral theorem, differential equations, Sturm-Liouville theory, Bessel functions, Legendre functions, special functions.
PHYS511 - Quantum Transport (3 + 0) 5
Atomistic view of electrical resistance; Schrödinger equation; Self-consistent field; Basis functions; Bandstructure; Subbands; Capacitance; Multi-band effective mass Hamiltonian; Level broadening; Open systems; Coherent transport; Non-coherent transport; Atom to transistor; Advanced formalism.
PHYS512 - Introduction to Modeling and Analysis of Dynamic Systems (3 + 0) 5
Translational mechanical systems; Standard forms for system models; Block diagrams; Computer solutions with MATLAB and FORTRAN; Rotational mechanical systems; Electrical systems; Laplace transform solutions of linear models.
PHYS513 - Quantum Phenomena (3 + 0) 5
Effective mass equation; Fermi's golden rule; Equilibrium and steady state; Restoration of equilibrium; Phonon emission and absorption rates; Lifetime and momentum relaxation time; Hot electrons; Transport from a single-particle viewpoint; Transport in the collective picture; Boltzman transport equation; Single-band & multi-band effective mass
PHYS514 - Particle Physics (3 + 0) 5
Historical Introduction to the Elementary Particles, Elementary Particle Dynamics, Relativistic Kinematics, Symmetries, Bound States, The Feynman Calculus, Quantum Electrodynamics.
PHYS515 - Condensed Matter Theory (3 + 0) 5
Crystals and three-dimensional lattices, scattering and structures, surfaces and interfaces, beyond crystals, the Fermi gas and single electron model, non-interacting electrons in a periodic potential, nearly free and tightly bound electrons, electron-electron interactions, cohesion of solids, phonons, electronic properties of metals and semicondu
PHYS516 - Physics of Semiconductor Devices (3 + 0) 5
Energy bands and carrier concentration in thermal equailibrium, carrier transport phenomena, p-n junction, bipolar transistors and related devices, MOS capacitor and MOSFET; MESFET and related devices, light emitting diodes and lasers, photodetectors and solar cells
PHYS517 - Modern Applied Optics (3 + 0) 5
Historical mile stones of light and optics, Newton?s light particles, Huygens? light waves, Planck?s and Einstein?s hypothesis of light quanta, basics of the classical description of light, quantum mechanical understanding of light (Quantum Optics), light detectors, light absorption, introduction to lasers, stimulated emission,population inversion
PHYS518 - Advanced Photonics (3 + 0) 5
Guided-wave optics and fiber optics, total internal reflection, photons in semiconductors, semiconductor laser sources, semiconductor laser amplifiers, semiconductor injection lasers, semiconductor photon detectors, photoconductors and photodiods, electro-optics and its applications, electro-optics of liquid crystals and anisoptopic media, photore
PHYS519 - Biophysics (3 + 0) 5
The structure of matter, light and X-radiation, spectroscopic methods in biological structure analysis, Structure and function of membrane, proteins, DNA, virus and bacteria.
CEAC519 - Biochemical Calculations (3 + 0) 5
Solutions of numerical problems in biochemistry involving acid-base chemistry, blood buffers, chemistry of biological molecules, enzymes, biochemical energetics, spectrophotometry.
CEAC529 - Spectroscopic Techniques (3 + 0) 5
General introduction to spectroscopy, electronic absorption spectroscopy, vibration and raman spectroscopy, nuclear magnetic resonance spectroscopy, electron paramagnetic resonance spectroscopy, mass spectroscopy, x-ray crystallography, SEM and TEM.
MATH587 - Applied Mathematics (3 + 0) 5
Calculus of variations: Euler-Lagrange equation, the first and second variations, necessary and sufficient conditions for extrema, Hamilton`s principle, and applications to Sturm-Liouville problems and mechanics; integral equations: Fredholm and Volterra integral equations, the Green?s function, Hilbert-Schmidt theory, the Neumann series and Fredho
PHYS510 - FORTRAN for Scientists and Engineers (3 + 0) 5
UNIX/LINUX platforms for FORTRAN, basic UNIX/LINUX commands, introduction to computers, introduction to programming, elements of FORTRAN, control statements and loops, Do loops, arrays and subscripted variables, formatted input/output, character arrays, subprograms, files in FORTRAN, professional programming in FORTRAN, comparison of FORTRAN 77 wit
ME601 - Advanced Mathematics for Engineers (3 + 0) 5
The objective of this course is to improve the skills of students in mathematics in advanced topic such as linear spaces and operators, matrix algebra, tensor fields, complex analysis and calculation of variations.
ENE404 - Energy and Environment (3 + 0) 5
Energy resources, processes, environmental effects, air pollution, sustainability, global warming, climate change.
APM444 - Rocket and Missile Technology (3 + 0) 5
Entry information for rocket and missile design, problems of full-scale effects by the atmosphere, rocket fuel, solid fuel rockets, liquid fuel rocket and missiles, fuel composition, combustion, fuel grain, rocket engines, nozzle flow, rocket performance parameters, propulsion, propulsion coefficient, characteristic exhaust output velocity,impulse
EE606 - Special Topics (3 + 0) 5
Content of each special course will be announced prior to the term.
ENE303 - Modeling, Analysis and Simulation (3 + 1) 5
Translational mechanical systems, state-variable equations, inputoutput equations, matrix formulation, block diagrams and computer simulation, rotational mechanical systems, electrical systems, Laplace transform solutions of linear models.