ECTS - - Mechatronics Engineering Master of Science without Thesis
Compulsory Departmental Courses
MDES600 - Research Methodology and Communication Skills (3 + 0) 5
Rigorous, scholarly research, particularly theses or dissertations. Literature review, surveys, meta-analysis, empirical research design, formulating research questions, theory building, qualitative and quantitative data collection and analysis methods, validity, reliability, triangulation, building evidences, writing research proposal
MECE500 - Graduation Project (0 + 0) 40
Students are assigned to work closely with one or more faculty to gain expert knowledge on a specific topic in mechatronic engineering. Each student (either individually or as a member of a team) should either complete a design project and manufacture the design product, or carry out a detailed experiment (design or use an available setup)
Elective Courses
CE566 - Advanced Mathematical Methods in Civil Engineering (3 + 0) 5
First-, second- and higher-order linear ordinary differential equations, system of differential equations, power series solution of differential equations, Laplace transforms, partial differential equations, numerical integration and derivation, numerical solution of differential equations.
CMPE466 - Soft Computing (3 + 0) 5
Biological and artificial neurons, perceptron and multilayer perceptron; ANN models and learning algorithms; fuzzy sets and fuzzy logic; basic fuzzy mathematics; fuzzy operators; fuzzy systems: fuzzifier, knowledge base, inference engine, and various inference mechanisms such as Sugeno, Mamdani, Larsen etc., composition and defuzzifier.
CMPE541 - Advanced Databases (3 + 0) 5
Database system concepts, transaction processing, concurrency control and database recovery, object-oriented and object-relational databases, semi-structured data and XML, parallel and distributed databases, advanced concepts of distributed databases, introduction to big data, temporal databases.
EE222 - Microcontrollers (3 + 2) 7
Basic microcontroller structure, memory organisation and addressing, addressing modes, assembly language programming, C programming, interrupts, interrupt programming, interfacing with input and display devices, timers, capture, compare and PWM operations, serial communication, I2C interface, A/D conversion.
EE449 - Pattern Classification and Sensor Applications for Engineers (3 + 0) 5
Sensors, general information about sensor types and sensor working principles; what is a pattern; pattern classification applications; theory and methods of pattern classification; feature extraction and selection; MATLAB Classification Learner Tool; analysis and performance of classifiers; RFID basics.
EE504 - Introduction to Systems Analysis (3 + 0) 5
Review of linear algebra concepts, classifications of systems and system representations, continuous and discrete time systems, state space realizations, analysis techniques: frequency domain, Laplace and z-domain analyses, solutions of linear systems, stability analysis; assessment of the techniques by a computational tool such as MATLAB.
EE505 - Neural Networks and Applications (3 + 0) 5
An introduction to basic neurobiology, the main neural network architectures and learning algorithms, and a number of neural network applications, McCulloch Pitts neurons, single-layer perceptrons, multi-layer perceptrons, radial basis function networks, committee machines, Kohonen self-organising maps, and learning vector quantization.
EE506 - Computational Methods in Electrical and Electronics Engineering (3 + 0) 5
Root finding and numerical integration, fixed and floating point arithmetic and error standards, one and multidimensional interpolation and extrapolation, numerical optimization techniques, least squares, statistical methods (Monte Carlo), computational approaches to linear transformations (Karhunen-Loeve, discrete Fourier).
MDES610 - Mathematical Modeling via Differential and Difference Equations (3 + 0) 5
Differential equations and solutions, models of vertical motion, single-species population models, multiple-species population models, mechanical oscillators, modeling electric circuits, diffusion models, modeling by means of difference equations.
MDES620 - Numerical Solution of Differential Equations (3 + 0) 5
Numerical solution of initial value problems; Euler, multistep and Runge-Kutta methods; numerical solution of boundary value problems; shooting and finite difference methods; stability, convergence and accuracy; numerical solution of partial differential equations; finite difference methods for parabolic, hyperbolic and elliptic equations; explic
MDES655 - Linear Optimization (3 + 0) 5
Sets of linear equations, linear feasibility and optimization, local and global optima, the Simplex method and its variants, theory of duality and the dual-Simplex method, network-Simplex algorithms, computational complexity issues and interior-point algorithms.
MFGE420 - Project Management in Manufacturing (3 + 0) 5
Project management standards;project,portfolio,program and operation management concepts; managing participation,teamwork, and conflict;need identification and assessment,problem definition; creativity and idea generation;methods and tools of functional/physical/task decomposition;mind mapping;planning methods; cost estimation and budgeting;time management and scheduling;project quality management;resource allocation; project risk management techniques; project execution, monitoringtechniques
MFGE577 - Quality Control and Metrology (3 + 0) 5
Elementary metrology, linear-angular and comparative measurement, instruments and gauges for testing straightness, flatness, squareness, parallelism, limits, fits and gauges, inspection, quality function in industry, fundamentals of statistical concept in quality control, control charts in SQC, sampling inspection, operation characteristics (OC) cu
SE550 - Software Engineering (3 + 0) 5
Introduction to software engineering and related topics; software process and project metrics; project planning; scheduling and tracking; configuration management; software quality assurance; requirement analysis; data flow diagrams and related topics; design concepts and methods; implementation; testing methods and test strategies; object-oriented