IT Security (ISE542) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
IT Security ISE542 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to explain the threats and vulnerabilities present in the existing information systems. The course also introduces how to design and implement secure systems that will address the threats.
Course Learning Outcomes The students who succeeded in this course;
  • Describe the basic terms and concepts for IT security
  • Prepare plans for IT security
  • Develop IT security policies and programs
  • Recognize international security management models
  • Produce practical security solutions
  • Manage IT security risks
  • Attain knowledge about personnel security and ethics
Course Content Introduction to IT security, security plans, security policies, security models: TCSEC, common criteria, ISE/IEC 27000, CIBIT, ITIL; security risk assessment and management; security solutions; IT services and security; personnel security; ethics in IT security.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to IT security Chapter 1
2 Planning for security Chapter 2, 3
3 IT security policy Chapter 4
4 Developing security program Chapter 5
5 Security models and practices Chapter 6, 7
6 Information security management systems Instructor notes
7 Information security management systems Instructor notes
8 Information security management systems Instructor notes
9 Risk management Chapter 8, 9
10 Risk management Chapter 8, 9
11 Security solutions Chapter 10
12 Security solutions Chapter 10
13 Personnel security Chapter 11
14 Ethics in IT security Chapter 12
15 Final Examination Period Review of topics
16 Final Examination Period Review of topics

Sources

Course Book 1. Management of Information Security, M.E.Whitman, H.J.Mattord, Course Technology Cengage Learning, 2010, ISBN: 978-0-8400-3160-0
Other Sources 2. Computer forensics and cyber-crime, Britz M., Upper Saddle River, NJ: Prentice Hall, ISBN: 0132447495, 2008.
3. Introduction to Computer Security, Bishop Matt, Addison-Wesley, Pearson Education, Inc. ISBN: 0-321-24744-2, 2005.
4. Cryptography and Network Security: Principles and Practice, W. Stallings, 4/E, Prentice-Hall, 2006.
5. Security in Computing (3rd edition), Charles P. Pfleeger and Shari L. Pfleeger, Prentice-Hall, ISBN: 0-13-035548-8, 2003.
6. ISO/IEC 27001 Information Technology – Security Techniques – Information Security Management Systems – Requirements, 2005.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; an ability to apply the theoretical and applied knowledge of mathematics, science and mechatronics engineering to model and analyze mechatronics engineering problems. X
2 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems.
3 An ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; an ability to apply contemporary design methodologies; an ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.)
4 An ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; an ability to use information and communications technologies effectively.
5 An ability to design experiments, perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies.
6 An ability to work effectively on single disciplinary and multi-disciplinary teams; an ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines.
7 An ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written.
8 An ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation.
9 Be conscious on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself.
10 A knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, societal and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planing, improving or changing the norms with a criticism X
14 A competency on developing strategy, policy and application plans on the mechatronics engineering and evaluating the results in the context of qualitative processes. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 5 80
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 15 45
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 20 20
Prepration of Final Exams/Final Jury 1 30 30
Total Workload 175