ECTS - Advanced Biomaterials
Advanced Biomaterials (MATE548) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Advanced Biomaterials | MATE548 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | To give issues of biomaterials’ behavior, toxicology, and biocompatibility; the properties, performance, and use of biomaterials in order to teach the fundamental principles of biomaterials to all engineers, biologists, medical doctors. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Classification of Biomaterials; Polymeric, Metallic, Ceramic and Composite, Choice of Biomaterials for Biomedical Applications, Biomaterial Surfaces and Physiological Environment, Engineering Biomaterial Surfaces, Biocompatibility |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Definition of biomaterial, biocompatibility, host response | Related pages of the given sources |
2 | Synthetic and biological materials | Related pages of the given sources |
3 | Categories of biomaterial applications | Related pages of the given sources |
4 | Works of biomaterials | Related pages of the given sources |
5 | Properties of materials | Related pages of the given sources |
6 | Midterm I | |
7 | Properties of materials; bulk properties of materials, mechanical properties of materials | Related pages of the given sources |
8 | Surface analysis methods | Related pages of the given sources |
9 | Comparison of common surface analysis methods | Related pages of the given sources |
10 | Metallic biomaterials, Polymeric biomaterials, Ceramic biomaterials | Related pages of the given sources |
11 | Composite biomaterials | Related pages of the given sources |
12 | Sterilization procedures for biomaterials | Related pages of the given sources |
13 | Advanced materials; nanomaterials in bioengineering field | Related pages of the given sources |
14 | Synthesis and characterization of advanced biomaterials | |
15 | Evaluation of student presentations | |
16 | Final Exam |
Sources
Other Sources | 1. Biomaterials An Introduction, Joon Park, R.S. Lakes, 3rd Edition, Springer, 2007. |
---|---|
2. Biomaterials Principles and Applications, Joon Park, Joseph D. Bronzino, CRC Press, 2003. | |
3. Biomaterials and Bioengineering Handbook, Donald L. Wiss, 2003. | |
4. Biomaterials in the Design and Reliability of Medical Devices, Michael N. Helmus, Eurekah, 2002. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 10 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 2 | 35 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 5 | 100 |
Percentage of Semester Work | 65 |
---|---|
Percentage of Final Work | 35 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge of mathematics, science, and engineering. | X | ||||
2 | An ability to design and conduct experiments, as well as to analyze and interpret data. | X | ||||
3 | An ability to design a system, component, or process to meet desired needs. | X | ||||
4 | An ability to function on multi-disciplinary teams. | X | ||||
5 | An ability to identify, formulate and solve engineering problems. | X | ||||
6 | An understanding of professional and ethical responsibility. | X | ||||
7 | An ability to communicate effectively. | X | ||||
8 | An understanding the impact of engineering solutions in a global and societal context and recognition of the responsibilities for social problems. | X | ||||
9 | Recognition of the need for, and an ability to engage in life-long learning. | X | ||||
10 | Knowledge of contemporary engineering issues. | X | ||||
11 | An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | X | ||||
12 | Skills in project management and recognition of international standards and methodologies | X | ||||
13 | An ability to make methodological scientific research. | X | ||||
14 | An ability to produce, report and present an original or known scientific body of knowledge. | X | ||||
15 | An ability to defend an originally produced idea. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 1 | 16 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 2 | 15 | 30 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 12 | 12 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 126 |