ECTS - Processing of Ceramic Materials
Processing of Ceramic Materials (MATE474) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Processing of Ceramic Materials | MATE474 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | |
Learning and Teaching Strategies | . |
Course Lecturer(s) |
|
Course Objectives | To develop the general understanding on the fabrication process of polycrystalline ceramic materials and glass, the relationship between processing and microstructure, and sintering mechanism |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Powder preparation, preconsolidation, shape-forming process, synthesis, theory of sintering, modified densification processes, final machining, effect of grinding on microstructure of ceramics, glass manufacturing process. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction | Lecture slides |
2 | Synthesis of Ceramic Powders | Lecture slides |
3 | Powder Characterizations | Lecture slides |
4 | Colloidal Processing | Lecture slides |
5 | Sol-gel | Lecture slides |
6 | Mixing of Ceramic Powders 1 | Lecture slides |
7 | Mixing of Ceramic Powders 2 | Lecture slides |
8 | Forming of Ceramic Materials | Lecture slides |
9 | Drying of Green Bodies | Lecture slides |
10 | Binder Removal | Lecture slides |
11 | Solid State Sintering 1 | Lecture slides |
12 | Solid State Sintering 2 | Lecture slides |
13 | Liquid State Sintering | Lecture Slides |
14 | Microstructure of Polycrystalline Ceramics | Lecture slides |
15 | Overall review | |
16 | Final exam |
Sources
Course Book | 4. Ceramic Processing, Mohamed N. Rahaman, CRC, 2007. |
---|---|
Other Sources | 5. Modern Ceramic Engineering, 3rd ed., by D.W. Richerson, Taylor and Francis, 2003. |
6. Introduction to Ceramics, Kingery, Bowen and Uhlmann, Wiley, 1976. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 10 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 1 | 10 |
Presentation | 1 | 10 |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 5 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge of mathematics, science, and engineering. | X | ||||
2 | An ability to design and conduct experiments, as well as to analyze and interpret data. | X | ||||
3 | An ability to design a system, component, or process to meet desired needs. | X | ||||
4 | An ability to function on multi-disciplinary teams. | X | ||||
5 | An ability to identify, formulate and solve engineering problems. | X | ||||
6 | An understanding of professional and ethical responsibility. | X | ||||
7 | An ability to communicate effectively. | X | ||||
8 | An understanding the impact of engineering solutions in a global and societal context and recognition of the responsibilities for social problems. | X | ||||
9 | Recognition of the need for, and an ability to engage in life-long learning. | X | ||||
10 | Knowledge of contemporary engineering issues. | X | ||||
11 | An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | X | ||||
12 | Skills in project management and recognition of international standards and methodologies | X | ||||
13 | An ability to make methodological scientific research. | X | ||||
14 | An ability to produce, report and present an original or known scientific body of knowledge. | X | ||||
15 | An ability to defend an originally produced idea. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 1 | 10 | 10 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 15 | 15 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 125 |