ECTS - Engineering Economy
Engineering Economy (IE305) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Engineering Economy | IE305 | 6. Semester | 2 | 0 | 0 | 2 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Service Courses Taken From Other Departments |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer. |
Course Lecturer(s) |
|
Course Objectives | This course aims to introduce the economic dimension of evaluating and selecting alternative investment projects. By the end of the course, the student will be able to investigate engineering economy problems, and formulate and solve such problems using appropriate conceptual and mathematical skills and modeling structures. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Economic analysis for engineering and managerial decision-making; cash flows, effect of time and interest rate on money and physical assets; methods of evaluating alternatives: present worth, future worth, annual worth, rate-of-return and benefit/cost ratios; depreciation and taxes; effects of inflation. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Foundations of Engineering Economy | [1] pages 1-25 |
2 | How time and interest affect money: single payment formulas | [1] pages 27-33 |
3 | How time and interest affect money: single payment formulas (cont) | [1] pages 27-33 |
4 | How time and interest affect money: uniform series formulas | [1] pages 34-36 |
5 | How time and interest affect money: gradient formulas and shifted cash flows | [1] pages 37-57 |
6 | Nominal and effective interest rates | [1] page 59-78 |
7 | Present worth analysis | [1] page 80-106 |
8 | Annual worth analysis | [1] pages 107-123 |
9 | Rate of return analysis | [1] pages 124-159 |
10 | Benefit/Cost analysis and public sector projects | [1] pages 160-181 |
11 | Effects of inflation | [1] pages 237-258 |
12 | Midterm | |
13 | Unit method, cost indexes, cost-capacity equations, factor method, unit cost estimation | [1] pages 259-286 |
14 | Depreciation methods | [1] pages 287-311 |
15 | After-tax economic analysis | [1] pages 312-347 |
16 | Final Examination Period |
Sources
Course Book | 1. Basics of Engineering Economy, Leland Blank, Anthony Tarquin, McGraw-Hill Education |
---|---|
Other Sources | 2. Contemporary Engineering Economics, CS Park, 3rd Edition, Addison Wesley, 1997. |
3. Engineering Economy, GJ Thuesen & WJ Fabrycky, 9th Edition, Prentice Hall, 2001 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 60 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | |
Supportive Courses | X |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems. | X | ||||
2 | Ability to formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose. | |||||
3 | Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. | |||||
4 | Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | |||||
5 | Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | |||||
6 | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | |||||
7 | Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | |||||
8 | Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | |||||
9 | Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | |||||
10 | Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | X | ||||
11 | Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 2 | 32 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 5 | 80 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 3 | 6 |
Prepration of Final Exams/Final Jury | 1 | 7 | 7 |
Total Workload | 125 |