ECTS - Summer Practice II
Summer Practice II (CE499) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Summer Practice II | CE499 | 7. Semester | 0 | 0 | 0 | 0 | 10 |
Pre-requisite Course(s) |
---|
CE210 ve CE201 |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Demonstration. |
Course Lecturer(s) |
|
Course Objectives | To be familiar with the procedures used at civil engineering design offices. To present the experiences gained at the design office through verbal, written, and graphical means. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Following the procedures used during the design phase of various types of civil engineering projects for a period of 30 days and preparing a report at the end of this period. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|
Sources
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | 1 | 100 |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | - | - |
Final Exam/Final Jury | - | - |
Toplam | 1 | 100 |
Percentage of Semester Work | 100 |
---|---|
Percentage of Final Work | 0 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems. | |||||
2 | Ability to formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose. | |||||
3 | Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. | |||||
4 | Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | |||||
5 | Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | |||||
6 | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | X | ||||
7 | Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | X | ||||
8 | Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | |||||
9 | Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | X | ||||
10 | Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | X | ||||
11 | Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | 30 | 8 | 240 |
Study Hours Out of Class | |||
Presentation/Seminar Prepration | 1 | 2 | 2 |
Project | |||
Report | 1 | 8 | 8 |
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | |||
Prepration of Final Exams/Final Jury | |||
Total Workload | 250 |