ECTS - Introduction to Sustainability

Introduction to Sustainability (MAN408) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Sustainability MAN408 General Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Observation Case Study, Problem Solving, Team/Group.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Ceyhan Çiğdemoğlu
Course Assistants
Course Objectives Sustainability lies at the intersection of the environment, society and economics. This course explores the concepts of sustainability to increase knowledge and awareness of students. The course also aims to promote students’ critical thinking on what Sustainability really mean, what actions individuals and corporations can do for sustainable development
Course Learning Outcomes The students who succeeded in this course;
  • Integrate the meaning of sustainability in your life and your values
  • Evaluate perspectives on sustainability regarding environmental, economic and social considerations
  • Use metrics for measuring components of sustainability
  • Explain sustainability actions at the local, state, country, and global scales
Course Content What is sustainability; sustainability and related polices; climate and global change; environmental and resource economics; sustainable business practices; sustainability: ethics, culture, and history; sustainable development; sustainability indicators.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation

Sources

Other Sources 1. Sustainability: A Comprehensive Foundation by Tom Theis and Jonathan Tomkin, Editors
2. Brinkmann, R. (2016). Introduction to sustainability. John Wiley & Sons
3. Other related course materials provided by instructor.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and relevant engineering disciplines and acquires the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems.
2 Gains the ability to identify, formulate, and solve complex engineering problems and the ability to select and apply appropriate analysis and modeling methods for this purpose.
3 Gains the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements and to apply modern design methods for this purpose.
4 Gains the ability to select and use modern techniques and tools necessary for the analysis and solution of complex engineering problems encountered in engineering applications and the ability to use information technologies effectively.
5 Gains the ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for investigating complex engineering problems or discipline specific research questions.
6 Gains the ability to work effectively in intra-disciplinary and multi-disciplinary teams and the ability to work individually.
7 Gains the ability to communicate effectively in written and oral form, acquires proficiency in at least one foreign language, the ability to write effective reports and understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Gains awareness of the need for lifelong learning and the ability to access information, follow developments in science and technology, and to continue to educate him/herself X
9 Gains knowledge about behaviour in accordance with ethical principles, professional and ethical responsibility and standards used in engineering applications
10 Gains knowledge about business practices such as project management, risk management, and change management and develops awareness of entrepreneurship, innovation, and sustainable development.
11 Gains Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration 1 10 10
Project
Report
Homework Assignments 1 20 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 22 22
Prepration of Final Exams/Final Jury 1 25 25
Total Workload 125