ECTS - Theatrical Entrepreneurial Skills

Theatrical Entrepreneurial Skills (ART268) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Theatrical Entrepreneurial Skills ART268 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Self-confidence in communication skills, creativity, and emotional intelligence that are bolstered by theater training play a significant role in determining a person’s success and happiness in personal and professional life. This course aims to equip students with theatrical skills that can be useful to sharpen their entrepreneurial skills.
Course Learning Outcomes The students who succeeded in this course;
  • Learn basic theatrical skills and manage to apply them to real life scenarios to perform better in business life.
Course Content Developing entrepreneurial skills through the art of theater.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to the course
2 Willingness to take risks
3 Skills development & self-confidence
4 Body language and entrepreneurship
5 Expressing feelings and thoughts
6 Speech to the audience
7 Acting for creative entrepreneurs
8 Acting for creative entrepreneurs
9 Script analysis and the common core
10 Making strong first impression
11 Critical thinking in entrepreneurship
12 Improving creativity
13 Listening skills
14 Overcoming Stage Fright
15 Collaborative team teaching
16 Final Assessment

Sources

Other Sources 1. Barker, C. (2010). Theatre Games: A New Approach to Drama Training. London: Bloomsbury Academic Publishing.
2. Kolb, B. M. (2015). Entrepreneurship for the Creative and Cultural Industries. New York: Routledge.
3. Prendergast, M. ve Saxton, J. (2010). Applied Theatre: International Case Studies and Challenges for Practice. Chicago: The University of Chicago Press.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application 8 10
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 60
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury 1 30
Toplam 12 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems.
2 Ability to formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3 Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.
4 Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6 Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7 Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. X
9 Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10 Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. X
11 Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 8 2 16
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 7 21
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 100