Stage Makeup (ART298) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Stage Makeup ART298 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course aims to enable students to acquire fundamental skills for theatrical makeup, which is used to visually enchance characters on the stage. By definition, theatrical makeup is more colorful and graphic compared to cosmetic makeup.
Course Learning Outcomes The students who succeeded in this course;
  • - Acquire relevant historical knowledge,
  • - Comprehend color theory,
  • - Learn how to use makeup tools by observing makeup sanitation processes,
  • - Understand implications of light and shadow for stage makeup,
  • - Apply mask making and trauma makeup techniques.
Course Content In line with the course objective and expected learning outcomes, the course will expose students to various aspects of theatrical makeup application for stage, such as historical context, products, tools and techniques.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 History of Makeup
2 History of Makeup
3 Hygiene, Sanitation, and Chemicals
4 Facial Anatomy
5 Mask history and Mask Making Practice
6 Color Theory of Makeup and Practice
7 Midterm
8 Light and Shadow
9 Project
10 Trauma Makeup
11 Trauma Makeup
12 Trauma Makeup
13 Corrective Makeup and Old Age Make up
14 Corrective Makeup and Old Age Make up
15 Seminar
16 Final Evaluation

Sources

Other Sources 1. Debreceni, T. (2013). Special Makeup Effects for Stage and Screen. Making and Applying Prosthetics. New York: Routledge.
2. Townsend, D. (2019). Foundations of Stage Makeup. New York: Routledge.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application 2 20
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 1 10
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 21 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems.
2 Ability to formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3 Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.
4 Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6 Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7 Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. X
9 Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10 Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11 Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 2 5 10
Special Course Internship
Field Work
Study Hours Out of Class 2 3 6
Presentation/Seminar Prepration 1 8 8
Project 1 8 8
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 100