ECTS - Economic Indicators and Financial Markets Analysis

Economic Indicators and Financial Markets Analysis (ECON325) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Economic Indicators and Financial Markets Analysis ECON325 General Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Drill and Practice, Team/Group.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Mehmet Fatih Ekinci
Course Assistants
Course Objectives The principal objective of ECON 325 is to discuss how to use and interpret economic indicators. Focusing on Turkish data, the course will overview the fundamental concepts of economic data. Furthermore, the course will provide fundamental concepts of portfolio management with a special emphasis on the stock market.
Course Learning Outcomes The students who succeeded in this course;
  • The main indicators used in the economy, to teach how to evaluate basic indicators with relevant economic analysis.
  • Addressing the implementation of economic policies
Course Content Financial literacy, basic concepts of economic indicators, the impact of economic indicators on the financial markets, stock market structure and trading strategies.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation

Sources

Course Book 1. Ders Notları
Other Sources 2. "Göstergeler Ne Anlatır? Türkiye İçin İktisadi Göstergeler Rehberi", Fatih Akyıldız, İstanbul Bilgi Üniversitesi Yayınları.
3. "Yatırım Analizi ve Portföy Yönetimi", Mehmet Baha Karan, Gazi Kitabevi.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 2 20
Homework Assignments - -
Presentation - -
Project 1 40
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 40
Final Exam/Final Jury - -
Toplam 4 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems.
2 Ability to formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3 Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.
4 Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6 Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7 Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. X
9 Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10 Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11 Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 0