ECTS - Creative Presentation in Digital Arts
Creative Presentation in Digital Arts (ART297) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Creative Presentation in Digital Arts | ART297 | Fall and Spring | 3 | 0 | 0 | 3 | 4 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | This course aims at providing an innovative approach to create a model of a product and making an animation used for tv, cinema and web based commercials and presentations. Besides having a general knowledge in 3D animation and modeling, learning scene editing of a 3d animation is one of the main goals. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | 3D modeling techniques suitable for 3D product presentation, workflows of multiple software design, scene lighting render and animation settings, editing presentation animation, using render passes layers in compositing and color correction process. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Definition of 3D modelling, learning the workflow, process in 3ds Max and Maxons Cinema 4D | |
2 | Choosing the product to model in 3D and animation based modelling techniques. | |
3 | Modelling process continues and retopolgy for texturing. | |
4 | Ways to create environment and scene for presentation and animation. | |
5 | UV texturing, UV map editing, material creating and settings. | |
6 | Finishing the texture material, scene and environment. | |
7 | Midterm | |
8 | Starting to create animation and ways to make animation more creative by using third party plugins. | |
9 | Camera movements and ways of trespassing between camera movements. | |
10 | Lights, kinds of lights, lights and shadows settings and using lights for making presentation more dramatic. | |
11 | Render settings, What is render pass, ways of rendering for production based editing. | |
12 | Softwares using for compositing. After Effects and Compositing. | |
13 | Logic of Sequence editing with render passes. Editing and professional workflow. | |
14 | Personal Project: Revision of the project and exporting the animation video with compositing. | |
15 | Personal Project: Submission of the project and critics. | |
16 | Final Evaluation |
Sources
Other Sources | 2. Autodesk. 3ds Max Yazılımı. https://www.autodesk.com.tr/products/3ds-max/overview |
---|---|
3. Adobe. Pt. https://www.allegorithmic.com/products/substance-painter | |
3. Etabek, H. D. (2017). Cinema 4D by Maxon. Abaküs Yayınevi. | |
4. Maxon. Cinema 4d. https://www.maxon.net/en/cinema-4d | |
5. Özsağlam, M. S. ve Bayraktar, C. (2012). 3ds Max. Seçkin Yayıncılık. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 15 | 10 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 1 | 10 |
Presentation | - | - |
Project | 1 | 30 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 19 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains adequate knowledge in mathematics, science, and relevant engineering disciplines and acquires the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. | |||||
2 | Gains the ability to identify, formulate, and solve complex engineering problems and the ability to select and apply appropriate analysis and modeling methods for this purpose. | |||||
3 | Gains the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements and to apply modern design methods for this purpose. | |||||
4 | Gains the ability to select and use modern techniques and tools necessary for the analysis and solution of complex engineering problems encountered in engineering applications and the ability to use information technologies effectively. | |||||
5 | Gains the ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for investigating complex engineering problems or discipline specific research questions. | |||||
6 | Gains the ability to work effectively in intra-disciplinary and multi-disciplinary teams and the ability to work individually. | |||||
7 | Gains the ability to communicate effectively in written and oral form, acquires proficiency in at least one foreign language, the ability to write effective reports and understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | |||||
8 | Gains awareness of the need for lifelong learning and the ability to access information, follow developments in science and technology, and to continue to educate him/herself | X | ||||
9 | Gains knowledge about behaviour in accordance with ethical principles, professional and ethical responsibility and standards used in engineering applications | |||||
10 | Gains knowledge about business practices such as project management, risk management, and change management and develops awareness of entrepreneurship, innovation, and sustainable development. | |||||
11 | Gains Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 5 | 2 | 10 |
Presentation/Seminar Prepration | |||
Project | 1 | 20 | 20 |
Report | |||
Homework Assignments | 1 | 5 | 5 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 7 | 7 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 100 |