ECTS - Creative Presentation in Digital Arts

Creative Presentation in Digital Arts (ART297) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Creative Presentation in Digital Arts ART297 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course aims at providing an innovative approach to create a model of a product and making an animation used for tv, cinema and web based commercials and presentations. Besides having a general knowledge in 3D animation and modeling, learning scene editing of a 3d animation is one of the main goals.
Course Learning Outcomes The students who succeeded in this course;
  • To improve the 3d modelling knowledge.
  • To model a product in 3D with presentation and commercial style. Preparing it for a commercial scene and how to use the model animation for web, TV and cinema commercials.
  • To learn which ways of 3D modelling and texturing techniques are important for product presentation.
  • 3D scene settings, light settings, background and camera movements.
  • Rendering the 3D product animation with render pass settings and compositing techniques.
Course Content 3D modeling techniques suitable for 3D product presentation, workflows of multiple software design, scene lighting render and animation settings, editing presentation animation, using render passes layers in compositing and color correction process.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Definition of 3D modelling, learning the workflow, process in 3ds Max and Maxons Cinema 4D
2 Choosing the product to model in 3D and animation based modelling techniques.
3 Modelling process continues and retopolgy for texturing.
4 Ways to create environment and scene for presentation and animation.
5 UV texturing, UV map editing, material creating and settings.
6 Finishing the texture material, scene and environment.
7 Midterm
8 Starting to create animation and ways to make animation more creative by using third party plugins.
9 Camera movements and ways of trespassing between camera movements.
10 Lights, kinds of lights, lights and shadows settings and using lights for making presentation more dramatic.
11 Render settings, What is render pass, ways of rendering for production based editing.
12 Softwares using for compositing. After Effects and Compositing.
13 Logic of Sequence editing with render passes. Editing and professional workflow.
14 Personal Project: Revision of the project and exporting the animation video with compositing.
15 Personal Project: Submission of the project and critics.
16 Final Evaluation

Sources

Other Sources 2. Autodesk. 3ds Max Yazılımı. https://www.autodesk.com.tr/products/3ds-max/overview
3. Adobe. Pt. https://www.allegorithmic.com/products/substance-painter
3. Etabek, H. D. (2017). Cinema 4D by Maxon. Abaküs Yayınevi.
4. Maxon. Cinema 4d. https://www.maxon.net/en/cinema-4d
5. Özsağlam, M. S. ve Bayraktar, C. (2012). 3ds Max. Seçkin Yayıncılık.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 10
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 19 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems.
2 Ability to formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3 Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.
4 Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6 Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7 Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. X
9 Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10 Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11 Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 5 2 10
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 1 5 5
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 7 7
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 100