ECTS - Economics of Innovation
Economics of Innovation (ECON442) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Economics of Innovation | ECON442 | General Elective | 3 | 0 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Question and Answer, Team/Group, Brain Storming, Role Play. |
Course Lecturer(s) |
|
Course Objectives | This course aims to scrutinize the role innovation in the economic development of developing countries. With a particular emphasis on technology, innovation and commercialization, this course aims to equip the students with a general background on how innovation can promote economic development. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | The role of science, technology and innovation in economics at the macro and at the micro level; the diffusion and absorption of innovation; issues concerning the measurement of innovation; the national, regional systems of innovation and clusters; the relationship between R&D support mechanisms and economic performance in Turkey. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Why should science, technology and innovation be studied? | Freeman, Chris and Luc Soete, 1997. The Economics of Industrial Innovation (Third Edition) MIT Press, Chapter 1 |
2 | What makes societies successful innovators? | Freeman, Chris and Luc Soete, 1997. The Economics of Industrial Innovation (Third Edition) MIT Press, Part 1 |
3 | The Macroeconomic Perspective. Science and Technology as factors of growth. | Freeman, Chris and Luc Soete, 1997. The Economics of Industrial Innovation (Third Edition) MIT Press, Part 3 |
4 | Macroeconomic Implications of the Diffusion of Innovations | Freeman, Chris and Luc Soete, 1997. The Economics of Industrial Innovation (Third Edition) MIT Press, Part 3 |
5 | The Microeconomic Perspective. Are Innovative firms any different? | William LAzonick, The Innovative firm, in Fagerberg, D.C. Mowery and R.R. Nelson (eds) 2005 The Oxford Handbook of Innovation, Oxford University Press, Chapter 2. |
6 | Innovation and diffusion | Bronwyn Hall, Innovation and diffusion, Fagerberg, D.C. Mowery and R.R. Nelson (eds) 2005 The Oxford Handbook of Innovation, Oxford University Press, Chapter 17. |
7 | Midterm | |
8 | Methodology of Measurement of Innovation | Hall, B., Mairesse, J. and Mohnen, P. (2010) Measuring the Returns to R&D. |
9 | Methodology of Measurement of Innovation | Smith, Keith (2005) Measuring Innovation in Fagerberg, D.C. Mowery and R.R. Nelson (eds) 2005 The Oxford Handbook of Innovation, Oxford University Press |
10 | Systemic Nature of Innovation | Charles Edquist, Systems of Innovation: Pespectives and Challenges in Fagerberg, D.C. Mowery and R.R. Nelson (eds) 2005 The Oxford Handbook of Innovation, Oxford University Press, Chapter 7 |
11 | Systemic Nature of Innovation | Bjorn Asheim and Meric Gertler: The Geography of Innovation in Fagerberg, D.C. Mowery and R.R. Nelson (eds) 2005 The Oxford Handbook of Innovation, Oxford University Press, Chapter 10 |
12 | Innovation and Economic Performance | Bart Verspagen, Innovation and Economic Growth in Fagerberg, D.C. Mowery and R.R. Nelson (eds) 2005 The Oxford Handbook of Innovation, Oxford University Press, Chapter 19 |
13 | Innovation and Economic Performance | Manuel M. Godhino and Jan Fagerberg: Innovation and Catching –up in Fagerberg, D.C. Mowery and R.R. Nelson (eds) 2005 the Oxford Handbook of Innovation, Oxford University Press,Chapter 20 |
14 | R&D Support and outcomes in Turkey | Özçelik, E. and Taymaz, E. (2008) R&D support programs in developing countries: The Turkish experience, Research Policy vol 37,pp 258–275. |
15 | General Review | |
16 | Final Exam |
Sources
Course Book | 1. Freeman, Chris and Luc Soete, (1997). The Economics of Industrial Innovation (Third Edition) MIT Press |
---|---|
Other Sources | 2. Fagerberg, D.C. Mowery and R.R. Nelson (eds) (2005) The Oxford Handbook of Innovation, Oxford University Press |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 15 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | 1 | 15 |
Project | 1 | 25 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 15 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 19 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains adequate knowledge in mathematics, science, and relevant engineering disciplines and acquires the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. | |||||
2 | Gains the ability to identify, formulate, and solve complex engineering problems and the ability to select and apply appropriate analysis and modeling methods for this purpose. | |||||
3 | Gains the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements and to apply modern design methods for this purpose. | |||||
4 | Gains the ability to select and use modern techniques and tools necessary for the analysis and solution of complex engineering problems encountered in engineering applications and the ability to use information technologies effectively. | |||||
5 | Gains the ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for investigating complex engineering problems or discipline specific research questions. | |||||
6 | Gains the ability to work effectively in intra-disciplinary and multi-disciplinary teams and the ability to work individually. | |||||
7 | Gains the ability to communicate effectively in written and oral form, acquires proficiency in at least one foreign language, the ability to write effective reports and understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | |||||
8 | Gains awareness of the need for lifelong learning and the ability to access information, follow developments in science and technology, and to continue to educate him/herself | X | ||||
9 | Gains knowledge about behaviour in accordance with ethical principles, professional and ethical responsibility and standards used in engineering applications | |||||
10 | Gains knowledge about business practices such as project management, risk management, and change management and develops awareness of entrepreneurship, innovation, and sustainable development. | |||||
11 | Gains Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 3 | 42 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | 1 | 5 | 5 |
Project | 1 | 7 | 7 |
Report | |||
Homework Assignments | 1 | 57 | 57 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 2 | 2 |
Prepration of Final Exams/Final Jury | 1 | 2 | 2 |
Total Workload | 143 |