ECTS - Numerical Methods for Engineers
Numerical Methods for Engineers (MATH380) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Numerical Methods for Engineers | MATH380 | 4. Semester | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
(MATH275 veya MATH231) |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Experiment, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | This undergraduate course is designed for engineering students. The objective of this course is to introduce some numerical methods that can be used to solve mathematical problems arising in engineering that can not be solved analytically. The philosophy of this course is to teach engineering students how methods work so that they can construct their own computer programs. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Solution of nonlinear equations, solution of linear systems, eigenvalues and eigenvectors, interpolation and polynomial approximation, least square approximation, numerical differentiation, numerical integration. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | 1. Preliminaries: Approximation, Truncation, Round-off errors in computations. | pp. 2 - 41 |
2 | 2. Solution of Nonlinear Equations 2.1. Fixed Point 2.2. Bracketing Methods for Locating a Root | pp. 41 - 51 |
3 | 2.3. Initial Approximation and Convergence Criteria 2.4. Newton-Raphson and Secant Methods | pp. 62 - 70 |
4 | 2.6. Iteration for Non-Linear Systems (Fixed Point for Systems) 2.7. Newton Methods for Systems | pp. 167 - 180 |
5 | 3. Solution of Linear Systems 3.3. Upper-Triangular Linear Systems (Lower-Triangular) 3.4. Gaussian Eliminatian and Pivoting | pp. 120 - 137 |
6 | 3.5. Triangular Factorization (LU) | pp. 141 - 153 |
7 | Midterm | |
8 | 3.7. Doğrusal sistemler için iteratif metotlar (Jacobi / Gauss Seidel Metotları) | pp. 156 - 165 |
9 | 11. Eigenvalues and Eigenvectors 11.2. Power Method (Inverse Power Method) | pp. 588 – 592 pp. 598 - 608 |
10 | 4. Interpolation and Polynomial Approximation 4.2. Introduction to Interpolation 4.3. Lagrange Approximation and Newton Approximation | pp. 199 - 228 |
11 | 5. Curve Fitting 5.1. Least-squares Line | pp. 252 - 259 |
12 | 5.3. Spline fonksiyonları ile interpolasyon | pp. 279 - 293 |
13 | 6. Numerical Differentiation 6.1. Approximating the Derivative 6.2. Numerical Differentiation Formulas | pp. 320 - 348 |
14 | 7. Numerical Integration 7.1. Introduction to Quadrature 7.2. Composite Trapezoidal and Simpson’s Rule | pp. 352 - 374 |
15 | Review | |
16 | Genel Sınav |
Sources
Course Book | 1. J. H. Mathews, K. D. Fink, Numerical Methods Using Matlab, 4th Edition, Prentice Hall, 2004. |
---|---|
Other Sources | 2. S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, 3rd Edition, Mc Graw Hill Education, 2012. |
3. A. Gilat, V. Subramaniam, Numerical Methods for Engineers and Scientists: An introduction with Applications Using MATLAB, 3rd Edition, John Wiley & Sons, Inc. 2011. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | 2 | 10 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 5 | 100 |
Percentage of Semester Work | 0 |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems. | X | ||||
2 | Ability to formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose. | |||||
3 | Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. | |||||
4 | Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | |||||
5 | Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | |||||
6 | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | |||||
7 | Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | |||||
8 | Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | |||||
9 | Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | |||||
10 | Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | |||||
11 | Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | 16 | 1 | 16 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 13 | 13 |
Total Workload | 77 |