Open Channel Hydraulics (CE470) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Open Channel Hydraulics CE470 Area Elective 3 0 0 3 6
Pre-requisite Course(s)
CE307
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Meriç YILMAZ
Course Assistants
Course Objectives To develop an understanding of the hydraulics of open channel flow by using Conservation of Momentum, Energy and Mass principles and make necessary design of open channels and learn basic principles for sediment transport in open channels
Course Learning Outcomes The students who succeeded in this course;
  • Students can determine uniform flow parameters in open channels by using conservation of mass and momentum principles.
  • Students can determine flow parameters in open channel due to channel transitions using conservation of mass and energy principles and specific energy concept.
  • Students can determine rapidly varied flow parameters in open channels such as hydraulic jump, etc.
  • Students can design non-erodible and erodible open channels using relevant methods.
  • Students can determine water surface profile of gradually varied flow in open channels and solve numerically using step methods.
  • Students can determine the hydraulic parameters for flow measurement devices such as weirs and gates in open channel flow.
Course Content Uniform flow in open channel, gradually varied flow in open channels, rapidly varied flow in open channels, sediment transport in open channels.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Brief Review of Basic Concepts of Open Channel Flow
2 Brief Review of Basic Concepts of Open Channel Flow
3 Brief Review of Basic Concepts of Open Channel Flow
4 Design of Open Channels for Uniform Flow
5 Design of Open Channels for Uniform Flow
6 Design of Open Channels for Uniform Flow
7 Gradually Varied Flow
8 Gradually Varied Flow
9 Gradually Varied Flow
10 Gradually Varied Flow
11 Channel controls
12 Channel controls
13 HEC-RAS Tutorial
14 HEC-RAS Tutorial
15 Final Exam Period
16 Final Exam Period

Sources

Course Book 1. Open Channel Flow, Henderson, F.M., Mac Millan Publishing Co., New York, 1966
Other Sources 2. Lecture Notes, CE 372 Hydromechanics , METU Civil Engineering Department, 2012
3. Fluid Mechanics, Streeter, V.L., E. Benjamin Wylie, McGraw-Hills Inc, New York, 1978
4. Open Channel Hydraulics, Chow V.T., McGraw-Hills Inc.,-Kogakusha Co., Tokyo, 1959
5. Open Channel Flow, French R.H., McGraw-Hills Inc., Singapore, 1987

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 40
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems. X
2 Ability to formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3 Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.
4 Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. X
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6 Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. X
7 Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9 Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10 Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11 Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 6 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 150