ECTS - Prestressed Concrete Fundamentals

Prestressed Concrete Fundamentals (CE438) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Prestressed Concrete Fundamentals CE438 Area Elective 3 0 0 3 6
Pre-requisite Course(s)
CE342
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Halit Cenan MERTOL
Course Assistants
Course Objectives To introduce the fundamental mechanics of prestressing and its applications to concrete structural elements.
Course Learning Outcomes The students who succeeded in this course;
  • Calculate prestress losses due to several sources
  • Determine the cross section stresses in prestressed concrete flexural members under a given loading
  • Determine the strand number and layout as well as the level of prestress in a flexural member to resist a given loading with a specific cross section
  • Determine whether a given prestressed concrete member has sufficient shear capacity to resist a given loading
Course Content Introduction to prestressing, prestress losses, flexural analysis and design, composite construction, shear, torsion, deflections.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to prestressing
2 Prestress losses
3 Prestress losses
4 Flexural analysis and design
5 Flexural analysis and design
6 Flexural analysis and design
7 Flexural analysis and design
8 Composite construction
9 Composite construction
10 Composite construction
11 Shear
12 Shear
13 Torsion
14 Torsion, Deflections
15 Final exam period
16 Final exam period

Sources

Course Book 1. No specific textbook bill be used in this course. The instructor will prepare class notes using several reference books and the students will follow the course from these class notes.
Other Sources 2. E. Keyder, Öngerilmeli Beton, Seçkin Yayıncılık, 2005.
3. M. P. Collins and D. Mitchell, Prestressed Concrete Structures, Prentice-all, 1990.
4. T. Y. Lin and N. H. Burns, Design of Prestressed Concrete Structures, John Wiley and Sons, 1981.
5. TS 3233, Öngerilmeli Beton Yapıların Hesap ve Yapım Kuralları, Türk Standartları Enstitüsü, 2000.
6. TS 500, Betonarme Yapıların Hesap ve Yapım Kuralları, Türk Standardları Enstitüsü, 2000.
7. PCI Design Handbook, Precast and Prestressed Concrete Institute, 1999.
8. ACI 318-05, Building Code Requirements for Structural Concrete, American Concrete Institute, 2005.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 15
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 35
Toplam 7 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems. X
2 Ability to formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3 Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.
4 Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. X
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6 Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. X
7 Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9 Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10 Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11 Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments 4 5 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 150