ECTS - Highway Materials and Mixture Design
Highway Materials and Mixture Design (CE507) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Highway Materials and Mixture Design | CE507 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Experiment, Question and Answer. |
Course Lecturer(s) |
|
Course Objectives | Introduce a general formation on highway materials. Explain the physical and chemical properties of bituminous materials by conducting several tests on them. Evaluate the characteristics of granular materials. Give main principles of asphalt mixture design. Introduce Marshall Design features on mixtures and methods for surface treatment |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Physical and chemical properties of asphalts, tests on asphalts, granular materials, sieve analysis and specific gravity of coarse and fine aggregates, Marshall mix design method, |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | General characteristics of bituminous materials | Pages 1-13 (Course Book) |
2 | Methods of asphalt production | Pages 14-22 (Course Book) |
3 | Chemical properties of asphalt. | Pages 23-33 (Course Book) |
4 | Physical properties of asphalt | Pages 48-65 (Course Book) |
5 | Asphalt emulsions | Pages 34- 47 (Course Book) |
6 | Aggregate classification | Pages 66- 83 (Course Book) |
7 | Sieve analysis and specific gravity | Pages 84-92 (Course Book) |
8 | Combination of different aggregates | Pages 93-112 (Course Book) |
9 | Surface treatment design methods | Pages 113-132 (Course Book) |
10 | Marshall Design Principles | References |
11 | Marshall Design Principles | References |
12 | Stability, durability, fatigue characteristics of asphalt mixtures | Pages 133-142 (Course Book) |
13 | Flexibility, skid resistance and workability properties of asphalt mixtures | Pages 133-142 (Course Book) |
14 | Asphalt distresses; rutting | Pages 133-142 (Course Book) |
15 | Final Exam Period | |
16 | Final Exam Period |
Sources
Other Sources | 2. Bitümlü Malzemeler Labaratuvar El Kitabı, Karayolları Genel Müdürlüğü, Yayın No: 239 |
---|---|
3. Asfalt Betonu Karışım Dizayn Metodları, Karayolları Genel Müdürlüğü Yayınları |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | 1 | 15 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 4 | 100 |
Percentage of Semester Work | 65 |
---|---|
Percentage of Final Work | 35 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Attains knowledge through wide and in-depth investigations his/her field and surveys, evaluates, interprets, and applies the knowledge thus acquired. | X | ||||
2 | Has a critical and comprehensive knowledge of contemporary engineering techniques and methods of application. | X | ||||
3 | By using unfamiliar, ambiguous, or incompletely defined data, completes and utilizes the required knowledge by scientific methods; is able to fuse and make use of knowledge from different disciplines. | X | ||||
4 | Has the awareness of new and emerging technologies in his/her branch of engineering profession, studies and learns these when needed. | X | ||||
5 | Defines and formulates problems in his/her branch of engineering, develops methods of solution, and applies innovative methods of solution. | X | ||||
6 | Devises new and/or original ideas and methods; designs complex systems and processes and proposes innovative/alternative solutions for their design. | |||||
7 | Has the ability to design and conduct theoretical, experimental, and model-based investigations; is able to use judgment to solve complex problems that may be faced in this process. | |||||
8 | Functions effectively as a member or as a leader in teams that may be interdisciplinary, devises approaches of solving complex situations, can work independently and can assume responsibility. | X | ||||
9 | Has the oral and written communication skills in one foreign language at the B2 general level of European Language Portfolio. | |||||
10 | Can present the progress and the results of his investigations clearly and systematically in national or international contexts both orally and in writing. | X | ||||
11 | Knows social, environmental, health, safety, and legal dimensions of engineering applications as well as project management and business practices; and is aware of the limitations and the responsibilities these impose on engineering practices. | X | ||||
12 | Commits to social, scientific, and professional ethics during data acquisition, interpretation, and publication as well as in all professional activities. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | 1 | 3 | 3 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 8 | 16 |
Prepration of Final Exams/Final Jury | 1 | 16 | 16 |
Total Workload | 125 |