ECTS - Computer Aided Analysis and Design of Reinforced Concrete Structural Members

Computer Aided Analysis and Design of Reinforced Concrete Structural Members (CE449) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Computer Aided Analysis and Design of Reinforced Concrete Structural Members CE449 Area Elective 3 0 0 3 6
Pre-requisite Course(s)
CE342
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Halit Cenan Mertol
Course Assistants
Course Objectives To provide advanced level of knowledge on reinforced concrete design topics along with the utilization of program coding.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be able to draw moment curvature diagram of a beam and calculate the deflection of beam using moment curvature diagram.
  • Students will be able to evaluate the ductility of various beams.
  • Students will be able to design reinforced concrete slender columns, two way slabs, and columns under biaxial bending.
  • Students will be able to design reinforced concrete members under punching shear and combined shear and torsion. Learning Outcomes of the Course
  • Students will be able to write Microsoft Excel and Visual Basic programs to design reinforced concrete members.
Course Content Material properties, moment curvature relationships of beams, serviceability, ductility of beams, slender columns, two-way slabs, biaxial bending of columns, punching shear, behavior under shear and torsion, seismic design principles.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Material Properties
2 Material Properties
3 Moment Curvature Relationships of Beams
4 Moment Curvature Relationships of Beams
5 Serviceability
6 Serviceability
7 Ductility of Beams
8 Slender Columns
9 Two – Way Slabs
10 Biaxial Bending of Columns
11 Punching Shear
12 Behavior under Shear and Torsion
13 Seismic Design Principles
14 Seismic Design Principles
15 Final Exam Period
16 Final Exam Period

Sources

Other Sources 1. Türk Standarları Enstitüsü, Betonarme Yapıların Tasarım ve Yapım Kuralları, TS500, TSE, 2000.
2. Türk Standardları Enstitüsü, Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri, TS498, TSE, 1997.
3. T.C. Bayındırlık ve İskan Bakanlığı, Deprem Bölgelerinde Yapılacak Binalar Hakkında Esaslar, 2007.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Attains knowledge through wide and in-depth investigations his/her field and surveys, evaluates, interprets, and applies the knowledge thus acquired. X
2 Has a critical and comprehensive knowledge of contemporary engineering techniques and methods of application.
3 By using unfamiliar, ambiguous, or incompletely defined data, completes and utilizes the required knowledge by scientific methods; is able to fuse and make use of knowledge from different disciplines. X
4 Has the awareness of new and emerging technologies in his/her branch of engineering profession, studies and learns these when needed.
5 Defines and formulates problems in his/her branch of engineering, develops methods of solution, and applies innovative methods of solution. X
6 Devises new and/or original ideas and methods; designs complex systems and processes and proposes innovative/alternative solutions for their design.
7 Has the ability to design and conduct theoretical, experimental, and model-based investigations; is able to use judgment to solve complex problems that may be faced in this process.
8 Functions effectively as a member or as a leader in teams that may be interdisciplinary, devises approaches of solving complex situations, can work independently and can assume responsibility.
9 Has the oral and written communication skills in one foreign language at the B2 general level of European Language Portfolio.
10 Can present the progress and the results of his investigations clearly and systematically in national or international contexts both orally and in writing.
11 Knows social, environmental, health, safety, and legal dimensions of engineering applications as well as project management and business practices; and is aware of the limitations and the responsibilities these impose on engineering practices. X
12 Commits to social, scientific, and professional ethics during data acquisition, interpretation, and publication as well as in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 6 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 150