Open Channel Hydraulics (CE470) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Open Channel Hydraulics CE470 Area Elective 3 0 0 3 6
Pre-requisite Course(s)
CE307
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Meriç YILMAZ
Course Assistants
Course Objectives To develop an understanding of the hydraulics of open channel flow by using Conservation of Momentum, Energy and Mass principles and make necessary design of open channels and learn basic principles for sediment transport in open channels
Course Learning Outcomes The students who succeeded in this course;
  • Students can determine uniform flow parameters in open channels by using conservation of mass and momentum principles.
  • Students can determine flow parameters in open channel due to channel transitions using conservation of mass and energy principles and specific energy concept.
  • Students can determine rapidly varied flow parameters in open channels such as hydraulic jump, etc.
  • Students can design non-erodible and erodible open channels using relevant methods.
  • Students can determine water surface profile of gradually varied flow in open channels and solve numerically using step methods.
  • Students can determine the hydraulic parameters for flow measurement devices such as weirs and gates in open channel flow.
Course Content Uniform flow in open channel, gradually varied flow in open channels, rapidly varied flow in open channels, sediment transport in open channels.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Brief Review of Basic Concepts of Open Channel Flow
2 Brief Review of Basic Concepts of Open Channel Flow
3 Brief Review of Basic Concepts of Open Channel Flow
4 Design of Open Channels for Uniform Flow
5 Design of Open Channels for Uniform Flow
6 Design of Open Channels for Uniform Flow
7 Gradually Varied Flow
8 Gradually Varied Flow
9 Gradually Varied Flow
10 Gradually Varied Flow
11 Channel controls
12 Channel controls
13 HEC-RAS Tutorial
14 HEC-RAS Tutorial
15 Final Exam Period
16 Final Exam Period

Sources

Course Book 1. Open Channel Flow, Henderson, F.M., Mac Millan Publishing Co., New York, 1966
Other Sources 2. Lecture Notes, CE 372 Hydromechanics , METU Civil Engineering Department, 2012
3. Fluid Mechanics, Streeter, V.L., E. Benjamin Wylie, McGraw-Hills Inc, New York, 1978
4. Open Channel Hydraulics, Chow V.T., McGraw-Hills Inc.,-Kogakusha Co., Tokyo, 1959
5. Open Channel Flow, French R.H., McGraw-Hills Inc., Singapore, 1987

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 40
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Attains knowledge through wide and in-depth investigations his/her field and surveys, evaluates, interprets, and applies the knowledge thus acquired.
2 Has a critical and comprehensive knowledge of contemporary engineering techniques and methods of application.
3 By using unfamiliar, ambiguous, or incompletely defined data, completes and utilizes the required knowledge by scientific methods; is able to fuse and make use of knowledge from different disciplines. X
4 Has the awareness of new and emerging technologies in his/her branch of engineering profession, studies and learns these when needed.
5 Defines and formulates problems in his/her branch of engineering, develops methods of solution, and applies innovative methods of solution. X
6 Devises new and/or original ideas and methods; designs complex systems and processes and proposes innovative/alternative solutions for their design.
7 Has the ability to design and conduct theoretical, experimental, and model-based investigations; is able to use judgment to solve complex problems that may be faced in this process.
8 Functions effectively as a member or as a leader in teams that may be interdisciplinary, devises approaches of solving complex situations, can work independently and can assume responsibility.
9 Has the oral and written communication skills in one foreign language at the B2 general level of European Language Portfolio.
10 Can present the progress and the results of his investigations clearly and systematically in national or international contexts both orally and in writing.
11 Knows social, environmental, health, safety, and legal dimensions of engineering applications as well as project management and business practices; and is aware of the limitations and the responsibilities these impose on engineering practices. X
12 Commits to social, scientific, and professional ethics during data acquisition, interpretation, and publication as well as in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 6 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 150