Earthquake Engineering (CE440) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Earthquake Engineering CE440 Area Elective 3 0 0 3 6
Pre-requisite Course(s)
CE202 ve CE321
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Ertan SÖNMEZ
Course Assistants
Course Objectives To provide an overview of earthquake engineering principles as applied to the analysis and design of structures. Applicable concepts from seismology will be introduced including significant features of seismic ground motion.
Course Learning Outcomes The students who succeeded in this course;
  • Students will have an understanding of the fundamental factors controlling the response of structures subjected to ground motion.
  • Students will be able to formulate the equation of motion of single (SDOF) and multi-degree-of-freedom (MDOF) systems
  • Students will be able to apply numerical integration schemes to calculate the response history of a linear SDOF system subjected to earthquake ground motion
  • Students will be able to apply modal analysis to calculate the response history of the required response parameters.
  • Students will be able to apply the response spectrum analysis to obtain the peak values of the required response parameters.
  • Students will be able to write MATLAB programs to calculate the response of SDOF and MDOF systems subjected to excitations.
Course Content Seismic ground motion, introduction to earthquakes, causes of earthquake, seismic waves, factors affecting earthquake motion at a site, prediction of motion at a site, recording and processing of earthquake ground motion; single degree of freedom systems, formulation of the equation of motion, free vibration analysis.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 - Introduction to earthquakes - Causes of earthquake seismic waves, - Factors affecting earthquake motion at a site - Prediction of motion at a site - Recording and processing of earthquake ground motion Handout
2 SDOF Systems: - Formulation of the equation of motion 3-35
3 SDOF Systems: - Free Vibration Analysis (undamped and damped systems) - Damping in structures 35-52
4 SDOF Systems: - Earthquake response of linear systems - Time-step integration methods for linear-elastic systems 187-197
5 SDOF Systems: - Time-step integration methods for linear-elastic systems - Response Spectra 155-187
6 Multi-degree of freedom systems (MDOFs) - Formulation of the equation of motion 311-353
7 Multi-degree of freedom systems (MDOFs) - Free vibration - Natural vibration frequencies and modes - Orthogonality of modes - Normalization of modes 365-383
8 Multi-degree of freedom systems (MDOFs) - Computation of vibration properties 311-353
9 Multi-degree of freedom systems (MDOFs) - Modal Analysis 434-444
10 Multi-degree of freedom systems (MDOFs) - Modal Analysis 392-409
11 Multi-degree of freedom systems (MDOFs) - Response History Analysis 468-514
12 Multi-degree of freedom systems (MDOFs) - Response Spectra Analysis, modal superposition 444-467
13 Seismic design loads, design spectra; ground motion maps, seismic codes 468-514
14 Introduction to inelastic behavior 514-549
15 Final Exam Period
16 Final Exam Period

Sources

Course Book 1. Chopra, A.K., Dynamics of Structures - Theory and Applications to Earthquake Engineering, 3rd edition, 2007, Pearson Prentice Hall, Pearson Education Inc.
Other Sources 2. Clough, R.W. and Penzien J., Dynamics of Structures, 2nd edition, 1993, McGraw-Hill Inc.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 6 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 30
Toplam 9 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Attains knowledge through wide and in-depth investigations his/her field and surveys, evaluates, interprets, and applies the knowledge thus acquired. X
2 Has a critical and comprehensive knowledge of contemporary engineering techniques and methods of application.
3 By using unfamiliar, ambiguous, or incompletely defined data, completes and utilizes the required knowledge by scientific methods; is able to fuse and make use of knowledge from different disciplines. X
4 Has the awareness of new and emerging technologies in his/her branch of engineering profession, studies and learns these when needed.
5 Defines and formulates problems in his/her branch of engineering, develops methods of solution, and applies innovative methods of solution. X
6 Devises new and/or original ideas and methods; designs complex systems and processes and proposes innovative/alternative solutions for their design.
7 Has the ability to design and conduct theoretical, experimental, and model-based investigations; is able to use judgment to solve complex problems that may be faced in this process. X
8 Functions effectively as a member or as a leader in teams that may be interdisciplinary, devises approaches of solving complex situations, can work independently and can assume responsibility. X
9 Has the oral and written communication skills in one foreign language at the B2 general level of European Language Portfolio.
10 Can present the progress and the results of his investigations clearly and systematically in national or international contexts both orally and in writing.
11 Knows social, environmental, health, safety, and legal dimensions of engineering applications as well as project management and business practices; and is aware of the limitations and the responsibilities these impose on engineering practices. X
12 Commits to social, scientific, and professional ethics during data acquisition, interpretation, and publication as well as in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments 6 4 24
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 11 22
Prepration of Final Exams/Final Jury 1 14 14
Total Workload 150