ECTS - Fundamentals of the Theory of Computation

Fundamentals of the Theory of Computation (CMPE572) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Fundamentals of the Theory of Computation CMPE572 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Brain Storming.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The goal of the course is to give students an insight about fundamental aspects of computer science in the context of computability and complexity theories.
Course Learning Outcomes The students who succeeded in this course;
  • Students are expected to develop their mathematical orientation and capabilities through theorem proving in computer science discipline.
  • Students are expected to learn about one of the fundamental bases of computer science: The Computability Theory.
  • Students are expected to better recognize and position the science and engineering of computer.
Course Content Models of computation, Church-Turing thesis, decidability and undecidability, recursive enumerability, time complexity, classes P and NP, space complexity, LOGSPACE, PSPACE-completeness.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Chapter 0 of Course Book
2 Turing Machines: The Definition, Alternative definitions, Hilbert's Tenth Problem, Church Turing Thesis Chapter 3 of Course Book
3 Turing Machines: The definition, Alternative definitions, Hilbert's Tenth Problem, Church Turing Thesis Chapter 3 of Course Book
4 Decidability: Decidable Languages, Halting Problem Chapter 4 of Course Book
5 Decidability: Decidable Languages, Halting Problem Chapter 4 of Course Book
6 Reducibility: Undecidable Problems, Mapping Reducibility Chapter 5 of Course Book
7 MIDTERM I
8 Recursion Theorem Chapter 6 of Course Book
9 Time Complexity: Measuring Complexity, Class P, Class NP Chapter 7 of Course Book
10 Time Complexity: Measuring Complexity, Class P, Class NP Chapter 7 of Course Book
11 MIDTERM II
12 Time Complexity: NP-Completeness Chapter 7 of Course Book
13 Space Complexity: Savitch's Theorem, Class P-Space Chapter 8 of Course Book
14 PAPER PRESENTATION and DISCUSSIONS

Sources

Course Book 1. M. Sipser, “Introduction to the Theory of Computation”, (2nd Edition), Thomson Course Technology, 2006, ISBN-13:978-0-619-21764-8.
Other Sources 2. E. Rich, “Automata, Computability and Complexity: Theory and Applications”, (1st Edition), Pearson/Prentice Hall, 2007, ISBN-13: 978-0132288064.
3. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages, and Computation", (2nd Edition), Addison Wesley, 2001, ISBN 0-201-44124-1.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar 1 10
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 40
Toplam 4 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering. X
2 An ability to design and conduct experiments, as well as to analyse and interpret data. X
3 An ability to design a system, component, or process to meet desired needs.
4 An ability to function on multi-disciplinary domains.
5 An ability to identify, formulate, and solve engineering problems. X
6 An understanding of professional and ethical responsibility.
7 An ability to communicate effectively.
8 Recognition of the need for, and an ability to engage in life-long learning.
9 A knowledge of contemporary issues.
10 An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
11 Skills in project management and recognition of international standards and methodologies
12 An ability to produce engineering products or prototypes that solve real-life problems.
13 Skills that contribute to professional knowledge.
14 An ability to make methodological scientific research.
15 An ability to produce, report and present an original or known scientific body of knowledge.
16 An ability to defend an originally produced idea.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration 1 20 20
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125