ECTS - Pattern Classification and Sensor Applications for Engineers

Pattern Classification and Sensor Applications for Engineers (EE449) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Pattern Classification and Sensor Applications for Engineers EE449 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Hakan TORA
Course Assistants
Course Objectives Sensors, general information about sensor types and sensor working principles. What is a pattern? Pattern classification applications. Theory and methods of pattern classification. Feature extraction and selection. MATLAB Classification Learner Tool. Analysis and performance of classifiers. RFID basics.
Course Learning Outcomes The students who succeeded in this course;
  • Know about sensors.
  • Design a classifier system.
  • Analyze the performance of classifiers.
  • Design and implement a project including sensors.
  • Use the MATLAB Classification Learner application tool.
Course Content Sensors, general information about sensor types and sensor working principles; what is a pattern; pattern classification applications; theory and methods of pattern classification; feature extraction and selection; MATLAB Classification Learner Tool; analysis and performance of classifiers; RFID basics.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 What is a sensor? Obtain the reference books.
2 Sensor types. Review last week’s topics
3 Working principles of sensors. Review last week’s topics
4 What is a pattern? Review last week’s topics
5 Theory of pattern classification Review last week’s topics
6 Feature extraction. Review last week’s topics
7 Feature selection. Review last week’s topics
8 Analysis and performance of classifiers. Review last week’s topics
9 Midterm Exam Review all topics up-to this week
10 Design of an interdisciplinary project Review all topics
11 Project work continued Review all topics
12 Implementation of the project. Review all topics
13 Implementation of the project Review all topics
14 Presentations Review the project

Sources

Course Book 1. Duda, R. O., & Hart, P. E. (2006). 2nd Edition, Pattern classification. John Wiley & Sons.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 15
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 35
Toplam 6 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 Ability to work in the fields of both thermal and mechanical systems including the design and production steps of these systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 3 3 9
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 3 3
Prepration of Final Exams/Final Jury 1 3 3
Total Workload 131