Emerging Technologies (SE426) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Emerging Technologies SE426 Area Elective 2 2 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course objective is to teach the fundamental concepts of IT-related new and emerging technologies. IT-related new and emerging technologies and their impact on information systems, business, and society will be identified, researched, discussed, and evaluated.
Course Learning Outcomes The students who succeeded in this course;
  • Explain why it is important for IT professionals to followemerging technologies
  • Explain how innovation happens and new technologies emerge
  • Discuss the advantages, disadvantages, and prospects of some current emerging technologies
  • Demonstrate the research skills necessary to identify and evaluate emerging technologies
  • Discuss in depth a chosen emerging technology, based on independent research
Course Content What is an "Emerging Technology", disruptive technologies; identification of disruptive technologies; the 3D printing revolution; the evolution of technology; the nature o innovation; combination and structure; phenomena, domains and problem-solving; origin of technologies; technological revolution; economic revolution; forecasting.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 What Is an "Emerging Technology"? Course Notes
2 Disruptive Technologies Course Notes
3 Identification of Disruptive Technologies Course Notes
4 The 3D Printing Revolution Course Notes
5 The Evolution of Technology Course Notes
6 The Nature of Innovation Course Notes
7 Midterm Exam
8 Combination and Structure Course Notes
9 Phenomena Course Notes
10 Domains & Problem-Solving Course Notes
11 Origin of Technologies Course Notes
12 Technological Revolution Course Notes
13 Economic Revolution Course Notes
14 Forecasting Course Notes
15 Forecasting Course Notes
16 Final Exam

Sources

Course Book 1. Notlar ve çevrimiçi kaynaklar sağlanacaktır. Course Notes and online resources will be provided
Other Sources 2. 1. W. Brian Arthur, The Nature of Technology: What It Is and How It Evolves, Free Press, 2009, 978-1-4165-4405-0.
3. 2. Chris Anderson, Makers: The New Industrial Revolution, Crown, 2012, 978-0-307-72095-5

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 20
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 5 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 Ability to work in the fields of both thermal and mechanical systems including the design and production steps of these systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 2 32
Laboratory
Application 16 2 32
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments 3 4 12
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 5 5
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 122