Nuclear Energy (ME424) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Nuclear Energy ME424 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
PHYS102
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Observation Case Study, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course covers atomic energy, radioactivity, nuclear processes, neutron-atom interactions, nuclear fission and fusion reactions, basic principles of neutron diffusion theory, nuclear energy systems, nuclear heat energy and applications, nuclear power plants.
Course Learning Outcomes The students who succeeded in this course;
  • The students who succeeded in this course; • Acknowledgment of nuclear energy • Understanding basic nuclear cases • Integration of fundamental and engineering science principles • Knowledge in nuclear power plants
Course Content Atom enerjisi, radyoaktivite, nükleer işlemler, nötron-atom etkileşimi, nükleer fisyon ve füzyon reaksiyonları, nötron dağılma teorisi, nükleer enerji sistemleri, nükleer ısı enerjisi ve uygulamaları, nükleer güç santralları.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Atom structure, Mass and Energy Relations
2 Radyoactivity, Nuclear Reactions
3 Neutron-Core Reactions
4 Mathematical analysis of neutron scattering in the core, velocity-impuls-energy equations
5 Moderator-letargy concepts
6 Neutron diffusion equation, general information
7 Neutron diffusion equation, solutions in one dimensional geometry
8 Neutron diffusion equation, solutions in more dimensional geometry
9 Nuclear Materials
10 Types of Nuclear Plants
11 Nuclear Energy Systems
12 Nuclear Heat and Applications
13 Fusion Reactors
14 Nuclear Plants of fourth Generation

Sources

Course Book 1. J.R. Lamarsh, A.J. Barata, Introduction To Nuclear Engineering, 3rd Edition, Prentice Hall, 2001
Other Sources 2. 1. A.R. Foster, R.L.Wright Jr., Basic Nuclear Engineering, 4th Edition, Allyn and Bacon Inc., 1983
3. 2. M.M.El-Wakil, Nuclear Heat Transport, American Nuclear Society, 1978

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 8 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 40
Toplam 11 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. X
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem. X
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions. X
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations. X
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results.
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions. X
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity.
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader.
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession). X
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project
Report
Homework Assignments 8 2 16
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 20 40
Prepration of Final Exams/Final Jury
Total Workload 126