Linear Algebra (MATH275) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Linear Algebra MATH275 3. Semester 4 0 0 4 6
Pre-requisite Course(s)
N/A
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is designed to enrich the knowledge of engineering students in linear algebra, and to teach them the basics and application of the methods for the solution of linear systems occurring in engineering problems.
Course Learning Outcomes The students who succeeded in this course;
  • understand the notion of matrix and perform algebraic operations on matrices, find the inverse of a nonsingular matrix, solve linear systems by using echelon form of matrices, determine the existence and uniquness of the solution and determine infinitely many solutions, if any
  • makes sense of vector spaces, subspaces, linear independence, basis and dimensions and rank of a matrix,
  • comprehend and use inner product, Gram-Schmidt process, orthogonal complements,
  • understand and use linear transformation and associated matrices,
  • evaluate determinants and solve linear systems with unique solution via determinant (Cramer’s Rule),
  • understand and find eigenvalues and eigenvectors, determine if a matrix is diagonalizable, and if it is, diagonalize it.
Course Content Linear equations and matrices, real vector spaces, inner product spaces, linear transformations and matrices, determinants, eigenvalues and eigenvectors.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Systems of Linear Equations, Matrices, Matrix Multiplication, Algebraic Properties of Matrix Operations pp. 1-39
2 Special Types of Matrices and Partitioned Matrices, Echelon Form of a Matrix, Solving Linear Systems pp. 42-49, 86-93, 95-103, 111-113
3 Elementary Matrices; Finding Inverses, Equivalent Matrices pp. 117-124, 126-129
4 Determinants, Properties of Determinants, Cofactor Expansion pp. 141-145, 146-154, 157-163
5 Inverse of a Matrix (via Its Determinant), Other Applications of Determinants (Cramer’s Rule) pp. 165-168, 169-172
6 Vectors in the Plane and In 3-D Space, Vector Spaces, Subspaces pp. 177-186, 188-196, 197-203
7 Span, Linear Independence, Basis and Dimension pp. 209-214, 216-226, 229-241
8 Homogeneous Systems, Coordinates and Isomorphism, Rank of a Matrix pp. 244-250, 253-266, 270-281
9 Inner Product Spaces, Gram-Schmidt Process pp. 290-296, 307-317, 320-329
10 Orthogonal Complements, Linear Transformations and Matrices pp. 332-343, 363-372
11 Kernel and Range of a Linear Transformation pp. 375-387
12 Matrix of a Linear Transformation pp. 389-397
13 Eigenvalues and Eigenvectors pp. 436-449
14 Diagonalization and Similar Matrices, Diagonalization of Symmetric Matrices pp. 453-461, 463-472
15 General Review
16 Final Exam

Sources

Course Book 1. Elementary Linear Algebra, B. Kolman and D.R. Hill, 9th Edition, Prentice Hall, New Jersey, 2008
Other Sources 2. Linear Algebra, S. H. Friedberg, A. J. Insel, L. E. Spence, Prentice Hall, New Jersey, 1979
3. Basic Linear Algebra, Cemal Koç, Matematik Vakfı Yay., Ankara, 1996

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses X
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. X
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. X
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 Ability to work in the fields of both thermal and mechanical systems including the design and production steps of these systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 4 56
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 86