ECTS - Introduction to Computational Fluid Dynamics
Introduction to Computational Fluid Dynamics (ME437) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Computational Fluid Dynamics | ME437 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
AE307 |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Experiment. |
Course Lecturer(s) |
|
Course Objectives | To introduce Computational Fluid Dynamics (CFD) as a tool for solution of fluid dynamics problems. To familiarize students with different methods used in solving computational fluid dynamics problems such as finite differences, finite elements and finite volumes. To teach concepts such as boundary and initial conditions, numerical accuracy, consistency and stability. To enable students to conduct an independent project on a related topic. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Hesaplamalı akışkanlar mekaniğine giriş, akışkanlar mekaniğinin temel denklemleri, temel hesaplamalı teknikler, sayısal şemaların özellikleri, sonlu farklar yöntemi, sonlu elemanlar yöntemi, denklem sistemlerinin çözüm yöntemleri, ağ (mesh) oluşturma. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction | |
2 | Commercial CFD Codes | |
3 | 1-Dimensional Heat Conduction, Solution File and Solution Procedure. | |
4 | Discretization Procedure With The Finite Volume Method: 1-Dimensional Heat Conduction, Boundary Conditions And Source Term Expressions. | |
5 | Boundary Source Linearization, General Rules For The Discretization Of Equations. | |
6 | Numerical Exact Solution Of The 1-Dimensional Heat Conduction Problem: Formulation of Governing Equations, Formulation Of The Algebraic Equations Usin | |
7 | Interior Cells, Boundary Cells, Numeric Solution Using Algebraic Equations. | |
8 | Laminar Flow İn A Sudden Expansion Channel, Solution File And Solution Procedure. | |
9 | Other Cfd Method Subjects: Variable Cell Distributions, Blocking İnside The Computational Domain. | |
10 | Relaxation, Convergence And Restart, Control Of Accuracy And Validity Of Cfd Solutions. | |
11 | Transient Natural Convection, Solution File And Solution Procedure. | |
12 | Application | |
13 | Application | |
14 | Application |
Sources
Course Book | 1. Versteeg, H. K. and Malalasekera, W., “An Introduction to Computational Fluid Dynamics”, Longman, 1995 |
---|---|
2. Patankar, S. V., “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, 1980. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 15 |
Presentation | - | - |
Project | 1 | 15 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 9 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. | X | ||||
2 | The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. | X | ||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. | X | ||||
4 | The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively. | X | ||||
5 | The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. | X | ||||
6 | The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. | |||||
7 | Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly. | X | ||||
8 | Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. | |||||
9 | Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications. | |||||
10 | Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. | |||||
11 | Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices. | |||||
12 | Ability to work in the fields of both thermal and mechanical systems including the design and production steps of these systems. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 3 | 42 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | 1 | 20 | 20 |
Report | |||
Homework Assignments | 5 | 3 | 15 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 15 | 30 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 155 |