Thermodynamics I (ENE203) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Thermodynamics I ENE203 3. Semester 3 0 0 3 6
Pre-requisite Course(s)
MATH157
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Mehdi MEHRTASH
Course Assistants
Course Objectives To cover the basic principles of thermodynamics. To present real-world engineering examples to give students a feel for how thermodynamics is applied in engineering practice. To develop an intuitive understanding of thermodynamics by emphasizing the physics and physical arguments.
Course Learning Outcomes The students who succeeded in this course;
  • Students should have the ability to use thermodynamic terminology and concepts appropriately.
  • Students should be able to identify the properties of a pure substance using tables including internal energy, enthalpy and entropy.
  • Students should be able to apply equations of state and thermodynamic relations to calculate the properties of a pure substance.
  • Students should be able to analyze systems using work, heat and the first and second law of thermodynamics on open and closed systems.
Course Content Basic concepts and definitions, properties of a pure substance, equations of state, work and heat interactions, first law of thermodynamics, internal energy and enthalpy, second law of thermodynamics, entropy, reversible and irreversible processes, thermodynamic analysis of processes, third law of thermodynamics.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction and Basic Concepts Chapter 1
2 Energy Conversion and General Energy Analysis Chapter 2
3 Properties of Pure Substances Chapter 3
4 Properties of Pure Substances Chapter 3
5 Energy Analysis of Closed Systems Chapter 4
6 Energy Analysis of Closed Systems Chapter 4
7 Mass and Energy Analysis of Control Volumes Chapter 5
8 Mass and Energy Analysis of Control Volumes Chapter 5
9 Midterm Exam
10 The Second Law of Thermodynamics Chapter 6
11 The Second Law of Thermodynamics Chapter 6
12 Entropy Chapter 7
13 Entropy Chapter 7
14 Thermodynamic Property Relations Chapter 12
15 Thermodynamic Property Relations Chapter 12
16 Final Exam

Sources

Course Book 1. Thermodynamics: An Engineering Approach, Y.A. Çengel and M. A. Boles, 8th Ed.in SI Units, McGraw-Hill, 2015
Other Sources 2. • Fundamentals of Engineering Thermodynamics, C. Borgnakke and R.E.Sonntag, 8th Ed. SI Version, 2014.
3. • Fundamentals of Engineering Thermodynamics, Michael J. Moran, Howard N. Shapiro, 5th Edition, John Wiley & Sons Inc., 2006

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 40
Toplam 8 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. X
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. X
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 Ability to work in the fields of both thermal and mechanical systems including the design and production steps of these systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 6 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 15 30
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 151