ECTS - Introduction to Mechanical Engineering

Introduction to Mechanical Engineering (ME101) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Mechanical Engineering ME101 2. Semester 1 0 0 1 1.5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Bilgin KAFTANOĞLU
Course Assistants
Course Objectives To train students about history of mechanical engineering, sub-disciplines of mechanical engineering, skills necessary for a degree in mechanical engineering and curricula, and career opportunities in mechanical engineering.
Course Learning Outcomes The students who succeeded in this course;
  • Giving the students, coming to Department of Mechanical Engineering, fundamental information about mechanical engineering
  • Knowledge about Mechanical Engineering
Course Content History of mechanical engineering, its areas of interest and its relationship with the other engineering disciplines, sub-disciplines of mechanical engineering, design, materials, mechanical and thermal sciences, emerging technologies and latest trends in mechanical engineering, skills necessary for a degree in mechanical engineering and

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 The Mechanical Engineering Profession Chapter 1
2 The Mechanical Engineering Profession Chapter 1
3 Problem Solving and Communication Skills Chapter 2
4 Forces In Structures And Machines Chapter 3
5 Forces In Structures And Machines Chapter 3
6 Materials And Stresses Chapter 4
7 Materials And Stresses Chapter 4
8 Fluids Engineering Chapter 5
9 Fluids Engineering Chapter 5
10 Thermal and Energy Systems Chapter 6
11 Thermal and Energy Systems Chapter 6
12 Motion And Power Transmission Chapter 7
13 Mechanical Design Chapter 8
14 Mechanical Design Chapter 8
15 Final Examination Period Review of Topics
16 Final Examination Period Review of Topics

Sources

Course Book 1. An Introduction to Mechanical Engineering, 2nd Ed., J. Wickert, Thomson Learning, 2006

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 14 40
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury 1 60
Toplam 15 100
Percentage of Semester Work 40
Percentage of Final Work 60
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. X
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. X
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly. X
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. X
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications. X
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. X
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices. X
12 Ability to work in the fields of both thermal and mechanical systems including the design and production steps of these systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 1 14
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 1 14
Presentation/Seminar Prepration
Project
Report
Homework Assignments 7 2 14
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 57