ECTS - Welding Metallurgy and Technology

Welding Metallurgy and Technology (MATE442) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Welding Metallurgy and Technology MATE442 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives To introduce the students of Materials Engineering to the principles of welding technology and its applications in addition with the behavior of metallic materials during and after welding
Course Learning Outcomes The students who succeeded in this course;
  • Ability to cite terms and definitions used in welding technology
  • To obtain information about basics of the welding processes, related application areas and recent developments
  • To obtain information about behavior of metallic materials during and after welding
  • Understanding of engineering tools used to ensure the quality of welding
  • Case studies
Course Content Welding related terms and definitions, classification of the welding processes, frequently used welding processes, their application areas, advantages and disadvantage, typical welding discontinuities, destructive and nondestructive tests applied on welded joints, quality aspects, welding metallurgy of ferrous and nonferrous metals, effects of the

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Welding related terms and definitions. Classification of the welding processes
2 Oxyacetylene welding process
3 Manual metal arc welding process.
4 Metal active gas welding process.
5 Tungsten inert gas welding process
6 Submerged arc welding process.
7 Resistance welding
8 Other welding processes
9 Behavior of carbon steels during welding
10 Behavior of low alloy steels during welding
11 Behavior of stainless steels during welding
12 Behavior of aluminium and aluminium alloys during welding
13 Behavior of other non-ferrous alloys during welding
14 Quality assurance, destructive and nondestructive tests on welding
15 Overall review
16 Final exam

Sources

Course Book 1. Lancaster.J.F., “Metallurgy of Welding”, Abington Publishing, Cambridge, 1999.
2. Kou.S. “Welding Metallurgy”, John Wiley & Sons, New Jersey, 2003.
Other Sources 3. ASM Metals Handbook. Vol.6. “Welding Brazing & Soldering”, ASM International, Metals Park, Ohio, USA, 1993.
4. AWS Welding Handbook, 9.th Ed. Vol. 2; AWS, Miami, USA, 2004.
5. AWS Welding Handbook, 9.th Ed. Vol. 3; AWS, Miami, USA, 2007.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 8 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. X
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. X
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. X
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 Ability to work in the fields of both thermal and mechanical systems including the design and production steps of these systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments 4 3 12
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 126