ECTS - Nanofabrication
Nanofabrication (MFGE481) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Nanofabrication | MFGE481 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | This course aims to acquaint the students with new concepts for high rate synthesis and processing of nanostructures, fabrication methods for nanomaterials and devices, and assembling them into nanosystems and then into larger scale structures of relevance in industry and in the medical field. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Fabrication of metallic nanomaterials, manufacturing of carbon based nanostructures, nanostructured systems from low-dimensional building blocks, characterization techniques and manufacturing methods, proximity effect. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Synthetic Approaches to Metallic Nanomaterials | Chapter 1 |
2 | Wet chemical preparations, electrochemical synthesis | Chapter 2 |
3 | Decomposition of Low-Valency Transition Metal Complexes, particle size separations | Chapter 3 |
4 | Structure of carbon nanomaterials, Fullerenes, carbon nanofibers, carbon nanotubes | Chapter 4 |
5 | Fabrication of Carbon nanotubes, arc-discharge method, laser ablation, CVD | Chapter 5 |
6 | Fabrication of Carbon nanotubes, arc-discharge method, laser ablation, CVD | Chapter 6 |
7 | Carbon based materials on biomedical applications, biosensors | Chapter 7 |
8 | Room temperature nano-imprint and nano-contact technologies | Chapter 8 |
9 | X-ray and electron beam lithography | Chapter 9 |
10 | X-ray and electron beam lithography | Chapter 10 |
11 | Nano machining | Chapter 11 |
12 | Bio-mimetic and bio-molecular recognition assembly, template assisted assembly, electric-field induced assembly, Langmuir-blodgett techniques, | Chapter 12 |
13 | Collagen structural hierarchy, Extracellular Matrix and Collagen Mimics in Tissue Engineering | Chapter 13 |
14 | Inorganic binding peptides via combinatorial biology | Chapter 14 |
15 | Nanomanufacturing processes using polymeric materials | Chapter 15 |
16 | Final | All chapters |
Sources
Course Book | 1. Nano the Essentials, T. Pradeep, McGraw Hill |
---|---|
Other Sources | 2. C. S. S. R. Kumar, J. Hormes, C. Leuschner, Nanofabrication Towards Biomedical Applications: Techniques, Tools, Applications, and Impact, Wiley-VCH (2005) |
3. Mark J. Jackson, Micro and Nanomanufacturing, Springer, 2007 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 5 | 5 |
Homework Assignments | 2 | 30 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 30 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 11 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. | X | ||||
2 | The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. | X | ||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. | X | ||||
4 | The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively. | X | ||||
5 | The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. | X | ||||
6 | The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. | |||||
7 | Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly. | |||||
8 | Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. | |||||
9 | Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications. | X | ||||
10 | Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. | |||||
11 | Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices. | |||||
12 | Ability to work in the fields of both thermal and mechanical systems including the design and production steps of these systems. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 4 | 64 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 2 | 15 | 30 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 3 | 6 |
Prepration of Final Exams/Final Jury | 1 | 2 | 2 |
Total Workload | 102 |