ECTS - Computer Integrated Manufacturing

Computer Integrated Manufacturing (MFGE404) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Computer Integrated Manufacturing MFGE404 Area Elective 3 0 1 3 5
Pre-requisite Course(s)
MFGE205
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Drill and Practice, Team/Group.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Bilgin Kaftanoğlu
Course Assistants
Course Objectives This course aims to acquaint the students with principles, concepts and techniques that are essential in Computer Integrated Manufacturing.
Course Learning Outcomes The students who succeeded in this course;
  • Students will develop an understanding of CAD systems and graphical modeling.
  • Students will get acquainted with data bases and numerical analysis related to CIM
  • Students will have understanding of Computer Aided Manufacturing (CAM) systems
  • Students will have an introduction to Computer Aided Process Planning (CAPP) Systems, Robotic Systems, Group Technology and Cellular Manufacturing Systems
  • Students will cultivate understanding about Automated Material Handling Systems, Automated Inspection Systems, Flexible Manufacturing Systems( FMS )
Course Content Introduction, computer aided design (CAD) systems, computer aided graphical modeling, CAD databases, computer aided manufacturing (CAM) systems, computer aided process Planning (CAPP) systems, robotic systems, group technology and cellular manufacturing systems, automated material handling systems, automated inspection systems, flexible manufacturi

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Course Moodle Website
2 Computer Aided Design (CAD) Systems Course Moodle Website
3 Computer Aided Design (CAD) Systems Course Moodle Website
4 Computer Aided Graphical Modelling Course Moodle Website
5 Computer Aided Graphical Modelling Course Moodle Website
6 CAD Data Bases Course Moodle Website
7 Midterm 1 Course Moodle Website
8 Computer Aided Manufacturing (CAM) Systems Course Moodle Website
9 Computer Aided Manufacturing (CAM) Systems Course Moodle Website
10 Computer Aided Process Planning (CAPP) Systems Course Moodle Website
11 Robotic Systems Course Moodle Website
12 Group Technology and Cellular Manufacturing Systems Course Moodle Website
13 Midterm 2 Course Moodle Website
14 Automated Material Handling Systems Course Moodle Website
15 Automated Inspection Systems, Flexible Manufacturing Systems( FMS ) Course Moodle Website
16 Final exam period Course Moodle Website

Sources

Course Book 1. Ders Notları ve yansılar / Lecture notes and slides
9. Foley, J. D. and Van Dam, A., “Fundamentals of Interactive Computer Graphics”, Addison Wesley, 1982
Other Sources 2. Mikell P. Groover, "Automation, Production Systems, and Computer-Integrated Manufacturing", Second Edition, Prentice Hall Inc.
3. Nanua Singh, "Systems Approach to Computer-Integrated Design and Manufacturing", John Wiley & Sons Inc.
4. ] U. Rembold, B.O. Nanji, and A. Storr, "Computer Integrated Manufacturing and Engineering" Addison-Wesley Inc.
5. James A. Rehg and Henry W. Kreabber, "Computer Integrated Manufacturing", Second Edition, Prentice Hall Inc.
6. Anand, Vera B., “Computer Graphics and Geometric Modelling for Engineers”, Wiley, 1993.
7. Rogers, David F. and Adams, J. Alan, “Mathematical Elements for Computer Graphics”
8. Newman, W. and Sproull, R.F., “Principles of Interactive Computer Graphics”, McGraw-Hill, 1979.
10. Zeid, I., “CAD/CAM: Theory and Practice”, McGraw-Hill, 1991.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 5 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. X
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. X
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. X
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly. X
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. X
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 Ability to work in the fields of both thermal and mechanical systems including the design and production steps of these systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 16 1 16
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project 1 50 50
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 5 10
Prepration of Final Exams/Final Jury 1 8 8
Total Workload 132