ECTS - High-Voltage Techniques
High-Voltage Techniques (EE452) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
High-Voltage Techniques | EE452 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
(EE210 veya AEE205 veya EE234) |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | To teach the fundamental electrical insulation problems |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Mechanisms of electrical breakdown in gases, in solid and liquid dielectrics and practical aspects, vacuum insulation, standard impulse voltages, discharge time, breakdown due to pollution. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | General Characteristic of Gaseous Insulation | Review lecture notes. |
2 | Basic Processes of Ionisation in a Gas | Review lecture notes. |
3 | Discharge in a Uniform Field | Review lecture notes. |
4 | Discharge in a Non-Uniform Field | Review lecture notes. |
5 | Standard Impulse Voltages | Review lecture notes. |
6 | Discharge Time | Review lecture notes. |
7 | Vacuum Insulation | Review lecture notes. |
8 | Breakdown in liquids | Review lecture notes. |
9 | Breakdown due to pollution | Review lecture notes. |
10 | Breakdown in solids | Review lecture notes. |
11 | Circuit breakers | Review lecture notes. |
12 | Overvoltages and their sources | Review lecture notes. |
13 | Methods and apparatus for overvoltage protection | Review lecture notes. |
14 | Practical usage of insulating materials | Review lecture notes. |
15 | Final Examination | Review course material |
16 | Final Examination | Review course material |
Sources
Other Sources | 1. C.L. Wadhwa, “High Voltage Engineering”, New Age International Publishers, 2nd edition, 2007, ISBN: 978-81-224-2323-5 |
---|---|
2. M.S. Naidu, V. Kamaraju, “High Voltage Engineering”, Mc-Graw Hill, 2nd edition, 1996, ISBN: 0-07-462286-2. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 60 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. | X | ||||
2 | The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. | X | ||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. | |||||
4 | The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively. | X | ||||
5 | The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. | X | ||||
6 | The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. | |||||
7 | Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly. | X | ||||
8 | Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. | X | ||||
9 | Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications. | |||||
10 | Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. | |||||
11 | Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices. | |||||
12 | Ability to work in the fields of both thermal and mechanical systems including the design and production steps of these systems. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 4 | 56 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 6 | 12 |
Prepration of Final Exams/Final Jury | 1 | 6 | 6 |
Total Workload | 122 |