Energy and Environment (ENE404) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Energy and Environment ENE404 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Team/Group, Project Design/Management.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Gizen Nur Bulanık Durmuş
Course Assistants
Course Objectives The course is a technical elective course for energy systems engineering degree. The main objectives of this course are; to provide basic understanding and appreciation of energy and environmental concepts and interconnectedness; analyze energy consumption patterns; discuss various energy resources that power the modern society; examine the energy conversion processes; explore interrelationships between energy use and industrial progress and environmental consequences; discuss future energy alternatives.
Course Learning Outcomes The students who succeeded in this course;
  • Examining the relationship between energy and global environment
  • Understanding the detrimental effects of producing and using energy on the environment
  • Dealing with the climate change and global warming
  • Understanding the need for the sustainability
Course Content Energy resources, processes, environmental effects, air pollution, sustainability, global warming, climate change.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Chapter 1
2 The Planet’s Energy Balance Chapter 2
3 History of Humankind’s Use of Energy Chapter 3
4 Energy Resources, Processes and Environmental Effects Chapter 4
5 Economics and the Environment Chapter 5
6 The Promise and Problems of Nuclear Energy Chapter 6
7 Air Pollution Chapter 7
8 Midterm Exam
9 Future World Energy Use and Carbon Emissions Chapter 8
10 Sustainability and Climate Change Chapter 9
11 Carbon Sequestration and Climate Engineering Chapter 10
12 Methodology and Assumptions for a Sustainable Low Carbon Future Chapter 11
13 Kyoto’s Protocol Chapter 12
14 Students’ Presentations
15 Students’ Presentations
16 Final Exam

Sources

Other Sources 1. Energy and the Environment, 2nd Edition by Robert A. Ristinen, Jack P. Kraushaar, 2006, Wiley
2. Energy and Climate Change: Creating a Sustainable Future by David Coley, 2008, Wiley
3. Energy Systems Engineering: Evaluation and Implementation, 1st Edition, Francis Vanek, Cornell University---Ithaca, Louis D. Albright, Cornell University, Ithaca, 2008, Mc-Graw Hill.
4. Environmental Impact Assessment, Larry Canter, 2nd Edition, 1996, Mc-Graw Hill
5. Alternative Energy For Dummies, Rik DeGunther, 2009, Wiley

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 25
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 50
Final Exam/Final Jury 1 40
Toplam 5 140
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. X
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. X
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. X
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices. X
12 Ability to work in the fields of both thermal and mechanical systems including the design and production steps of these systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 3 3 9
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 125