ECTS - - Metallurgical and Materials Engineering (with Thesis)
Compulsory Departmental Courses
MATE502 - Advanced Thermodynamics of Materials (3 + 0) 5
Laws of thermodynamics and their application to the chemical behavior of materials systems. Thermodynamics of binary and multicomponent solutions. Phase equilibria. Thermodynamics of chemical reactions. Thermodynamics of phase transformations.
MATE510 - Mathematical Methods in Materials Engineering (3 + 0) 5
Review of ordinary differential equations, partial differential equations, special functions, separation of variables, transform techniques, approximate techniques. Fourier and Bessel functions, boundary value problems, Laplace transformation, Numerical methods to solve differential equations, method of least squares
MATE585 - Materials & Processes Selection & Design Problems (3 + 0) 5
Design Process Steps; Design Principles; Computer Aided Engineering; Concurrent Engineering; Creativity and Problem Solving; Decision Theory; Computer Modeling & Simulation; Optimization; Information & Knowledge Sources for Design;Methods of Materials Selection, Processes & Process Selection; Interaction of Materials, Processing and Design; Design
MDES600 - Research Methodology and Communication Skills (3 + 0) 5
Rigorous, scholarly research, particularly theses or dissertations. Literature review, surveys, meta-analysis, empirical research design, formulating research questions, theory building, qualitative and quantitative data collection and analysis methods, validity, reliability, triangulation, building evidences, writing research proposal
Elective Courses
AE411 - Automotive Manufacturing Processes Using Lightweight Metals (3 + 1) 5
Advanced lightweight metals and manufacturing processes for automotive applications; metallurgy of lightweight automotive metals; engineering joining processes for metals; design for manufacturing using lightweight automotive metals.
AE426 - Design And Manufacturing Of Armored Vehicles (3 + 1) 5
Armored vehicle survivability concepts; threat types; basics of armor materials; penetration mechanics; metallic, ceramic and composites used in armor design; protection against blast; high strain-rate test methods for deriving constitutive and failure behavior of materials; specialized test methods for verification of protection levels; computational techniques used to predict structural failure.
ENE412 - Fuel Cell Technologies (3 + 0) 5
Introduction: fuel cell operating principles,history,types,components and systems;fuel cell thermodynamics and electrochemistry:Nernst equation,Tafel equation,cell voltage,fuel cell efficiency and losses for operational fuel cell voltages;proton exchange membrane fuel cells:components and system, construction and performance, critical issues and recent developments;fuel cell stack design and calculations; hydrogen production, storage, safety and infrastructure; balance of fuel cell power plant
IE509 - Production Systems (3 + 0) 5
Management and control of production function in organizational systems, concepts of materials management, master production scheduling and production planning from different perspectives, aggregate planning, lot sizing, scheduling in manufacturing systems, scheduling in service systems, design and operation of scheduling systems, material requirem
MATE440 - Corrosion and Oxidation of Metals (3 + 0) 5
Introduction to corrosion, thermodynamic and kinetic aspects of corrosion and oxidation, types of corrosion, corrosion in various environments, corrosion of engineering materials, corrosion testing, control and prevention methods, corrosion in material selection and design.
MATE442 - Welding Metallurgy and Technology (3 + 0) 5
Welding related terms and definitions, classification of the welding processes, frequently used welding processes, their application areas, advantages and disadvantage, typical welding discontinuities, destructive and nondestructive tests applied on welded joints, quality aspects, welding metallurgy of ferrous and nonferrous metals, effects of the
MATE458 - Materials for Catalysis and Fuel Cells (3 + 0) 5
Fundamentals of catalysis and catalytic reactors; catalyst synthesis methods; properties of catalytic materials and basics characterization methods; catalyst structure activity relationship fundamentals of electro-catalysis, photo catalysis, different types of fuel cells, and materials used for these applications; existing technology applications; future trends and emerging technologies
MATE460 - Biomaterials (3 + 0) 5
Definition of biomaterial,biocompatibility,host response,synthetic and biological materials,synthetic biomaterial classes,polymers in the body,implant factors,host factors,categories of biomaterial applications,evaluation of biomaterials,historical evaluation of implants,current work in biomaterials, motivation for future directions,current trends.Properties of materials;bulk properties of materials, mechanical properties of materials;comparison of common surface analysis methods;
MATE464 - Surface Processing of Materials (3 + 0) 5
Characterization of surfaces, interaction of surfaces, theory of contact mechanics, surface hardening methods, carburizing, conversion coatings, surface coating methods: gaseous, solution and molten state deposition processes, principles of physical and chemical vapor deposition, electrochemical deposition, spray coatings.
MATE470 - Introduction to Tissue Engineering (3 + 0) 5
Introduction and the important terminology and concepts of tissue engineering, cells for tissue engineering, biomaterials for tissue engineering, tissue fabrication technology, vascularization of artificial tissue, bioreactors for tissue engineering.
MATE482 - Secondary Steelmaking (3 + 0) 5
History of secondary steelmaking and trends in steel quality demands, thermodynamic fundamentals, fluid flow in steel melts, kinetics of reactions among phases, deoxidation of liquid steel, degassing and decarburization of liquid steel, desulfurization in secondary steelmaking, phosphorus control in secondary metallurgy, nitrogen control in steelma
MATE506 - Advanced Microscopy Tecniques (3 + 0) 5
Scanning electron microscope and its modes of operation, generation of X-rays in SEM, EDS, WDS, stereology, statistical analysis, fundamentals of digital imaging and image analysis, measurement of structural gradients, grain size, particle size and shape, spacing, structure-property relations.
MATE515 - Materials for MEMS Applications (3 + 0) 5
Fabrication of Micro-Electro Mechanical Systems (MEMS) by bulk and surface micro machining of single crystal, polycrystal and amorphous silicon and other materials. Design, fabrication, and materials issues involved in MEMS. Material properties, structural mechanics, and packaging of MEMS. Performance issues including electrostatic, magnetic,
MATE516 - Materials for Energy Technologies (3 + 0) 5
Materials aspects of energy collection, conversion, storage, and delivery. Photovoltaic, nuclear, solar, and thermoelectric materials. Fuel cells and battery technologies. Low density structural materials for weight savings. Hydrogen storage materials
MATE520 - Materials Processing During Casting (3 + 0) 5
Solidification Processes; Casting Hydrodynamics; Inclusion Control in Gating Systems; Heat Transport in Component and Continuous Casting, ESR process, Near Net Shape and Spray Casting; Structure Formation; Cooling Curves; Dendrite Structure and Dendrite Growth; Microsegregation and Macrosegregation in Alloys; Solidification and Cooling Shrinkage
MATE528 - Welding Metallurgy & Technology (3 + 0) 5
Basic welding processes (gas, arc, laser-beam and electron-beam welding). Metallurgy of welding. Weld metal solidification (grain structure, subgrain structure, microsegregation, macrosegregation, porosity, inclusions and cracking). Heat-affected zone (loss of strength, embrittlement and cracking in work-hardened materials, precipitation-hardening
MATE530 - Physical Metallurgy of Steels (3 + 0) 5
Interstitial and Substitutional Solutes in Alpha Iron and Their Interactions; Effects of Substitutional Solutes on Precipitation of Iron Carbides; Factors Affecting the Yield and Tensile Strengths of Carbon Steels; Dual-Phase Carbon Steels; Inclusion Shape Control; HSLA Steels; Heat-Treated Steels; The Boron Effect; Thermomechanical Treatment of
MATE532 - Texture and Anisotropy (3 + 0) 5
Single- and poly-crystal properties, crystal systems and symmetry, application of diffraction to determine texture, Kikuchi diffraction pattern, collecting-indexing-evaluation of diffraction patterns, orientation distribution function, typical textures observed in metals, texture development due to solidification, deformation, recrystallization,
MATE536 - Developments in Steelmaking Technologies (3 + 0) 5
Review of BOF steelmaking and secondary metallurgical processes. Recent developments in steelmaking technologies: Operations conducted at the converter, at the ladle furnace, at the vacuum degasser, at the tundish and at the continuous casting mould, etc. in relation to steel cleanliness as well as process improvement and production costs
MATE537 - Production of Ferroalloys (3 + 0) 5
Production of ferroalloys by carbothermic reduction, with special emphasis on ferrosilicon; Production of ferroalloys by metallothermic and vacuum reduction techniques; Detailed explanation of ferrochromium, ferromanganese, ferrotitanium, ferrovanadium, ferrotungsten, ferromolybdenum and ferronickel production
MATE544 - Powder Metallurgy (3 + 0) 5
Principles of the P/M process. Metal powder production methods. Powder characterization, properties of metal powders and their testing. Compaction processes. Densification mechanisms. Sintering theory. Liquid phase and activated sintering. Sintering atmospheres and furnaces. Full density processing. Finishing operations. Compact characterization.
MATE545 - Advanced Polymers (3 + 0) 5
Polymer Synthesis; Polymerization types, Polymerization techniques,Reactions of Synthetic polymers, Special topics in polymer synthesis, Conformation, Solutions and Molecular Weight; Polymer conformation and chain dimensions; Thermodynamics of polymer solutions, Measurement of molecular weight, Solid State Properties; Amorphous state, Crystalline
MATE549 - Tissue Engineering (3 + 0) 5
Definitions of Tissue-Cell; Struc tural Properties, Metabolic Activities, Cell and Tissue Culture; Fundamental Principles, Tissue Engineering-Biomaterial Interactions, ProteinBiomaterial-Surface Interactions, Cell-Biomaterial Interactions, Organ Failure and Regeneration; The Effect of Shear Force on Cellular Functions; The Role of Mass Transfer fo
MATE550 - Characterization Methods of Biomaterials (3 + 0) 5
Introduction to material characterization, thermal analysis and mechanical analysis, assays for extent of degradation, introduction to surface characterization, assays for protein type and amount, assays to determine effects of cell-material interactions, in vitro and in vivo assays for inflammatory response, assays for immune response, thrombosis
MATE551 - Animal Cell Culture (3 + 0) 5
Introduction, setting up a cell culture laboratory, the physicall environment, media, standard cell culture techniques, looking at cells, contamination: how to avoid it, recognize it, and get rid of it, serum-free culture, primary cultures, establishing a cell line, special growth conditions.
MATE556 - Materials Engineering Management (3 + 0) 5
This course addresses the role of the materials engineer as a "manager" of continuous improvement in materials design and production processes.Modern tools and techniques for planning and managing team projects involving facilities planning and design, materials and process selection and design, integrating the concepts of total quality; data base
MATE565 - Coatings and Thin Films (3 + 0) 5
Surface coating methods: Gaseous, solution and molten state deposition processes, fundamentals of vacuum technology, principles of physical and chemical vapor deposition, electrochemical deposition, origins of film stress, characterization of coatings, tribology of coatings, tool and die coatings, diamond and diamond-like carbon coatings
MATE570 - Advanced Mechanical Behavior (3 + 0) 5
Advanced studies of deformation and failure in materials. Macroscopic and microscopic aspects of deformation. Elasticity and plasticity theories and problems in deformation processing. Fracture mechanics and composite toughening mechanisms. Mechanisms of creep deformation. Fatigue
MATE572 - High Temperature Materials (3 + 0) 5
Principles of materials behavior at high temperatures. Microstructure-property relationships including phase stability and corrosion resistance to high temperature materials. Fracture and fatigue at elevated temperatures. Damage accumulation behavior and engineering applications of service life techniques
MATE574 - Mechanics & Metallurgy of Metal Forming (3 + 0) 5
Stress and Strain Tensors; Yield Criteria; Flow Rules; Plastic Instability; Deformation Mechanism Maps; Uniform Energy; Extrusion; Bar Drawing; Redundant Work; Slab Analysis of Rolling and Sheet drawing; Slip Line Field Theory; Formability; Plastic Anisotropy; Forming Limit Diagrams; Sheet Metal Properties of Metal Alloys of Common Use
MATE576 - Nuclear Reactor Materials (3 + 0) 5
Review of crystal structures, point defects and dislocations. Diffusion of point defects in solids. Thermal diffusion in uranium dioxide. Stress and Strain Energies near Dislocation Cores from Elastic Continuum Predictions. Radiation Damage in Solids, Kinematics of Elastic Collisions, Energy Dependent Hard Sphere Ion-Ion Scattering Approximation,
MATE586 - Independent Study I (3 + 0) 5
Students are assigned to work closely with one or more faculty members to gain expert knowledge on a specific topic in metallurgical and materials engineering. Each student (either individually or as a member of a team) should either complete a design project and manufacture the design product, or carry out a detailed experiment (design or use an
ME478 - Production Plant Design (3 + 0) 5
Introduction, fundamantals of design and CAD, manufacturing systems (CAD/CAM, FMS, CIM), market survey and plant location, plant layout, process analysis, quantity and quality planning and controlling for production, process and machine selection, materials handling, storage types, safety regulations, maintenance, environmental factors and R&D.
Technical Elective Courses
MATE504 - Materials Physics & Chemistry (3 + 0) 5
Physical properties of a wide range of materials from the electronic and atomic point of view. The bonding and structure of materials will be placed in context of quantum mechanics and band theory; and the electrical, optical, thermal, mechanical, and magnetic properties will be emphasized
MATE505 - Structure of Materials (3 + 0) 5
Atomic arrangements in crystalline and non-crystalline materials. Crystallography, kinematic, and dynamical theories of diffraction, applications to x-rays, electrons and neutrons. Interpretation of diffraction patterns and intensity distributions, application to scattering in perfect and imperfect crystals, and amorphous materials. Continuum desc
MATE508 - Kinetics, Phase Transformations & Transport (3 + 0) 5
Fundamentals of phase change, diffusion, heat transport, nucleation, and growth applied to solidification; ordering, spinodal decomposition, coarsening, reactions, massive transformations, diffusion-limited transformations and glass transitions
MATE509 - Theory, Modeling & Simulation of Materials Behavior (3 + 0) 5
Application of the mathematical and physical modeling for materials behavior and processesing problems like plastic deformation, creep, fatigue, sintering, electrochemical reactions, welding, solidification, etc. Computational methods of mesoscopic, continuum, and multiscale modeling of mechanical and thermodynamic properties, phase transformation
MATE512 - Nanomaterials (3 + 0) 5
Introduction, Nanomaterials; Nanotubes, Nanowalls, Nanowires, Nanorods, Nanoplates, Nanocomposites, Surfaces in Nanomaterials, Phase Transformations and Thermodynamics of Nanoparticles, Structures of Nanoparticles, Synthesis of Nanoparticles, Magnetic Properties of Nanoparticles, Optical Properties of Nanoparticles, Electrical Properties of Nanopa
MATE514 - Functional Materials (3 + 0) 5
Introduction to functional materials. Crystallography and phase transitions in solids. Structure-property relations in materials. Semiconductors. Magnetic and magnetostrictive materials. Phase change materials (shape memory materials). Ferroelectric films. Optical transition materials. An overview of technological applications based on electronic,
MATE535 - Integrated Iron and Steel Plants (3 + 0) 5
Fundamentals of iron and steelmaking. Review of basic principles of blast furnace, pretreatment of hot metal, oxygen steelmaking processes, ladle refining & vacuum degassing, tundish operations and continuous casting processes. Steel plant refractories. Alloying elements in continuously cast steel products. Stainless steel production
MATE560 - Tribology (3 + 0) 5
Characterization of surfaces, interaction of surfaces, theories of contact mechanics, fundamentals of friction, fundamentals of lubrication, types of wear, measurement of wear, tribology of engineering materials,tribology of machinery and vehicle components, tool wear and lubricants in metal cutting and shaping, tribology of hip and knee joint rep