ECTS - Advanced Thermodynamics of Materials
Advanced Thermodynamics of Materials (MATE502) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Advanced Thermodynamics of Materials | MATE502 | 1. Semester | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | To review basic definitions and laws of thermodynamics; entropy and enthalpy concepts, To present thermodynamics of reactions involving gases and pure condensed phases, To teach phase equilibrium and phase diagrams in one, two and three-component systems, To teach solution thermodynamics in detail, To introduce statistical thermodynamics, To teach thermodynamics of surfaces, interfaces & defects, To review thermodynamics of phase transformations, To teach fundamental concepts in electrochemistry, |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Laws of thermodynamics and their application to the chemical behavior of materials systems. Thermodynamics of binary and multicomponent solutions. Phase equilibria. Thermodynamics of chemical reactions. Thermodynamics of phase transformations. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Scope of Thermodynamics of Materials, basic definitions, Closed Systems, First Laws of Thermodynamics | Related pages of the textbook and other sources |
2 | Internal Energy, Enthalpy, Entropy, Helmholtz and Gibbs Free Energies, Energy Balance, Equilibrium and Spontaneity Criteria | Related pages of the textbook and other sources |
3 | Phase Equilibria in One-Component Systems | Related pages of the textbook and other sources |
4 | Open Systems, Chemical Potential, Partial Molar and Integral Molar Thermodynamic Quantities | Related pages of the textbook and other sources |
5 | Equilibrium and Spontaneity Criteria for Open Systems | Related pages of the textbook and other sources |
6 | Standard State, Fugacity, Activity, Activity Coefficient | Related pages of the textbook and other sources |
7 | Chemical Reactions, Standard Reactions, Activity Quotient and Equilibrium Constant, Spontaneity of Chemical Reactions, Equilibrium Calculations, Effects of Pressure and Temperature on Chemical Reactions | Related pages of the textbook and other sources |
8 | Binary Solutions, Ideal and Non-Ideal Solutions, Raoult’s and Henry’s Laws, Excess Properties, Relationship between Partial Molar and Integral Molar Quantities | Related pages of the textbook and other sources |
9 | Integration of the Gibbs-Duhem equation, Solution Models, Regular Solution, Dilute Solutions, Change of Standard States | Related pages of the textbook and other sources |
10 | Gibbs Free Energy and Composition Diagrams for binary systems | Related pages of the textbook and other sources |
11 | Change of Standard States and Quantitative Construction of the Gibbs Free Energy and Composition Diagrams and Phase Diagrams of Binary Systems | Related pages of the textbook and other sources |
12 | Stable and Unstable Equilibria in Binary Systems, Thermodynamics of Phase Transformations, Spinodal Decomposition | Related pages of the textbook and other sources |
13 | Multicomponent Solutions, Interaction Coefficients | Related pages of the textbook and other sources |
14 | Surface Tension, Effect of Curvature and Particle Size on Thermodynamic Properties, Equilibrium Conditions for Pressures, Solubilities of Small Particle Size Phases | Related pages of the textbook and other sources |
15 | Overall review | |
16 | Final exam |
Sources
Course Book | 1. C.H.P. Lupis, “Chemical Thermodynamics of Materials” Elsevier, 1983. |
---|---|
Other Sources | 2. D.R. Gaskell, “Introduction to the Thermodynamics of Materials”, Taylor and Francis, 1995. |
3. D.V. Ragone, “Thermodynamics of Materials”, Volumes I and II, John Wiley, 1995. | |
4. R.T. De Hoff, “Thermodynamics in Materials Science”, Mc Graw Hill 1993. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 10 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 8 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge of mathematics, science, and engineering. | X | ||||
2 | An ability to design and conduct experiments, as well as to analyze and interpret data. | X | ||||
3 | An ability to design a system, component, or process to meet desired needs. | X | ||||
4 | An ability to function on multi-disciplinary teams. | X | ||||
5 | An ability to identify, formulate and solve engineering problems. | X | ||||
6 | An understanding of professional and ethical responsibility. | X | ||||
7 | An ability to communicate effectively. | X | ||||
8 | An understanding the impact of engineering solutions in a global and societal context and recognition of the responsibilities for social problems. | X | ||||
9 | Recognition of the need for, and an ability to engage in life-long learning. | X | ||||
10 | Knowledge of contemporary engineering issues. | X | ||||
11 | An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | X | ||||
12 | Skills in project management and recognition of international standards and methodologies | X | ||||
13 | An ability to make methodological scientific research. | X | ||||
14 | An ability to produce, report and present an original or known scientific body of knowledge. | X | ||||
15 | An ability to defend an originally produced idea. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 4 | 64 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 5 | 12 | 60 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 15 | 30 |
Prepration of Final Exams/Final Jury | 1 | 25 | 25 |
Total Workload | 179 |