ECTS - Production Systems
Production Systems (IE509) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Production Systems | IE509 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | This course is designed to enable students to become aware of major production planning concerns and decision chains, fundamental problem areas in production planning and control, planning hierarchy and the relations with the management activities. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Management and control of production function in organizational systems, concepts of materials management, master production scheduling and production planning from different perspectives, aggregate planning, lot sizing, scheduling in manufacturing systems, scheduling in service systems, design and operation of scheduling systems, material requirem |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Typical features of production planning problems. Decision making in production planning. Short-term, medium-term, and long-term planning. | |
2 | Overview of mathematical models and optimization tools | |
3 | Deterministic continuous review models with uniform demand. Quantity discount models. Multiple-item models. | |
4 | Stochastic reorder point models. Periodic review models. | |
5 | Lot-sizing models with dynamic demand. | |
6 | Dynamic Programming approach. Wagner-Whitin principle for lot-sizing decisions. | |
7 | Zangwill’s extension to models which include backlogging. | |
8 | Aggregate planning. LP models for aggregate planning. Transportation Model approach to production planning problems. | |
9 | Minimum cost flow network models for production planning. Non-linear cost functions. | |
10 | Midterm | |
11 | Overview of deterministic vs. stochastic and static vs. dynamic models of scheduling. Integer programming models of single machine problems, algorithms and heuristics. | |
12 | Parallel machine models. Deterministic flow-shop and job-shop models. | |
13 | Assembly-line balancing: formulation and heuristics. | |
14 | Issues of computational complexity | |
15 | Final Examination Period | |
16 | Final Examination Period |
Sources
Course Book | 1. L.A. Johnson and D.C. Montgomery, Operations Research in Production Planning, Scheduling, and Inventory Control, John Wiley & Sons 1974. |
---|---|
Other Sources | 2. E.A. Silver, D.F. Pyke, R. Peterson, Inventory Management and Production Planning and Scheduling, 3rd edition, Wiley 1998. |
3. D. Sipper and R.L. Bulfin Jr., Production: Planning, Control and Integration, McGraw Hill, 1997. | |
4. M. Pinedo, Scheduling: Theory, Algorithms and Systems, 2nd edition, Prentice-Hall, 2002. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | 1 | 30 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge of mathematics, science, and engineering. | X | ||||
2 | An ability to design and conduct experiments, as well as to analyze and interpret data. | |||||
3 | An ability to design a system, component, or process to meet desired needs. | |||||
4 | An ability to function on multi-disciplinary teams. | X | ||||
5 | An ability to identify, formulate and solve engineering problems. | |||||
6 | An understanding of professional and ethical responsibility. | X | ||||
7 | An ability to communicate effectively. | X | ||||
8 | An understanding the impact of engineering solutions in a global and societal context and recognition of the responsibilities for social problems. | |||||
9 | Recognition of the need for, and an ability to engage in life-long learning. | X | ||||
10 | Knowledge of contemporary engineering issues. | X | ||||
11 | An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | |||||
12 | Skills in project management and recognition of international standards and methodologies | X | ||||
13 | An ability to make methodological scientific research. | X | ||||
14 | An ability to produce, report and present an original or known scientific body of knowledge. | X | ||||
15 | An ability to defend an originally produced idea. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 1 | 16 |
Presentation/Seminar Prepration | |||
Project | 1 | 4 | 4 |
Report | |||
Homework Assignments | 4 | 4 | 16 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 16 | 16 |
Prepration of Final Exams/Final Jury | 1 | 25 | 25 |
Total Workload | 125 |