ECTS - Pattern Classification and Sensor Applications for Engineers

Pattern Classification and Sensor Applications for Engineers (EE449) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Pattern Classification and Sensor Applications for Engineers EE449 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Hakan TORA
Course Assistants
Course Objectives Sensors, general information about sensor types and sensor working principles. What is a pattern? Pattern classification applications. Theory and methods of pattern classification. Feature extraction and selection. MATLAB Classification Learner Tool. Analysis and performance of classifiers. RFID basics.
Course Learning Outcomes The students who succeeded in this course;
  • Know about sensors.
  • Design a classifier system.
  • Analyze the performance of classifiers.
  • Design and implement a project including sensors.
  • Use the MATLAB Classification Learner application tool.
Course Content Sensors, general information about sensor types and sensor working principles; what is a pattern; pattern classification applications; theory and methods of pattern classification; feature extraction and selection; MATLAB Classification Learner Tool; analysis and performance of classifiers; RFID basics.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 What is a sensor? Obtain the reference books.
2 Sensor types. Review last week’s topics
3 Working principles of sensors. Review last week’s topics
4 What is a pattern? Review last week’s topics
5 Theory of pattern classification Review last week’s topics
6 Feature extraction. Review last week’s topics
7 Feature selection. Review last week’s topics
8 Analysis and performance of classifiers. Review last week’s topics
9 Midterm Exam Review all topics up-to this week
10 Design of an interdisciplinary project Review all topics
11 Project work continued Review all topics
12 Implementation of the project. Review all topics
13 Implementation of the project Review all topics
14 Presentations Review the project

Sources

Course Book 1. Duda, R. O., & Hart, P. E. (2006). 2nd Edition, Pattern classification. John Wiley & Sons.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 15
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 35
Toplam 6 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering.
2 An ability to design and conduct experiments, as well as to analyze and interpret data.
3 An ability to design a system, component, or process to meet desired needs.
4 An ability to function on multi-disciplinary teams.
5 An ability to identify, formulate, and solve engineering problems.
6 An understanding of professional and ethical responsibility.
7 An ability to communicate effectively.
8 The broad education necessary to understand the impact of engineering solutions in a global and societal context.
9 Recognition of the need for, and an ability to engage in life-long learning.
10 Knowledge of contemporary issues.
11 An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
12 Skills in project management and recognition of international standards and methodologies

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 3 3 9
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 3 3
Prepration of Final Exams/Final Jury 1 3 3
Total Workload 131