ECTS - Introduction to Bioinformatics
Introduction to Bioinformatics (SE446) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Bioinformatics | SE446 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The objective of the course is to provide necessary knowledge and skills related to computational techniques for mining the large amount of biological data. In this course the applications of the computational techniques in bioinformatics will be introduced. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | DNA and protein sequence alignment, phylogenetic trees, protein structure prediction, motive findin, microarray data analysis, gene/protein networks. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction | Chapters 1,2,3 (main text) |
2 | Producing and Analyzing Sequence Alignments | Chapter 4 |
3 | Pairwise Sequence Alignment and Database Searching | Chapter 5 |
4 | Pairwise Sequence Alignment and Database Searching | Chapter 5 |
5 | Patterns, Profiles, and Multiple Alignments | Chapter 6 |
6 | Patterns, Profiles, and Multiple Alignments | Chapter 6 |
7 | Recovering Evolutionary History | Chapter 7 |
8 | Building Phylogenetic Trees | Chapter 8 |
9 | Obtaining Secondary Structure from Sequence | Chapter 11 |
10 | Predicting Secondary Structures | Chapter 12 |
11 | Modeling Protein Structure | Chapter 13 |
12 | Clustering Methods and Statistics | Chapter 16 |
13 | Clustering Methods and Statistics | Chapter 16 |
14 | Clustering Methods and Statistics | Chapter 17 |
15 | Final Examination Period | Review of topics |
16 | Final Examination Period | Review of topics |
Sources
Course Book | 1. M. Zvelebil and J. O. Baum, Understanding Bioinformatics, Garland Science, 2008 |
---|---|
Other Sources | 2. N. C. Jones and P. A. Pevzner, An Introduction to Bioinformatics Algorithms, MIT press, 2004 |
3. A. M. Lesk, Introduction to Bioinformatics, Oxford University Press, 2002 | |
4. D. Mount, Bioinformatics: Sequence and genome analysis, Cold Spring Harbor Laboratory Press, 2001 | |
5. T. Jiang, Y. Xu, and M. Zhang, eds. Current Topics in Computational Molecular Biology, MIT press, 2002 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 1 | 20 |
Presentation | - | - |
Project | 1 | 30 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 4 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge of mathematics, science, and engineering. | |||||
2 | An ability to design and conduct experiments, as well as to analyze and interpret data. | |||||
3 | An ability to design a system, component, or process to meet desired needs. | |||||
4 | An ability to function on multi-disciplinary teams. | |||||
5 | An ability to identify, formulate, and solve engineering problems. | |||||
6 | An understanding of professional and ethical responsibility. | |||||
7 | An ability to communicate effectively. | |||||
8 | The broad education necessary to understand the impact of engineering solutions in a global and societal context. | |||||
9 | Recognition of the need for, and an ability to engage in life-long learning. | |||||
10 | Knowledge of contemporary issues. | |||||
11 | An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | |||||
12 | Skills in project management and recognition of international standards and methodologies |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 3 | 5 | 15 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 130 |