ECTS - Rapid Prototyping
Rapid Prototyping (MFGE405) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Rapid Prototyping | MFGE405 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | Participants will study topics fundamental to rapid prototyping and automated fabrication, including the generation of suitable CAD models, current rapid prototyping fabrication technologies, their underlying material science, the use of secondary processing, and the impact of these technologies on society. The rapid prototyping process will be illustrated by the actual design and fabrication of a part. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Rapid prototyping technologies, CAD models suitable for automated fabrication, secondary processing, additive manufacturing technologies, stereolithography, fused deposition modeling, laminated object manufacturing, selective laser sintering, direct metal laser sintering, casting processes for rapid prototyping, investment casting, rapid tooling, reverse engineering. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Overview of rapid prototyping and automated fabrication technologies • What is a prototype? • Why make a prototype? • What is automated fabrication? • History of numerical control • Process planning; manual, variant, generative | Chapter 1 |
2 | Introduction to injection molding • Introduction to injection molding • Design for injection molding • Selecting materials • UL standards | Chapter 2 |
3 | Rapid prototyping technologies • Machine tool motion • History of layered manufacturing • Stereolithography • Solid ground curing • Selective laser sintering • Fused deposition modeling • Laminated object manufacturing • Other systems | Chapter 3 |
4 | Rapid prototyping technologies • Machine tool motion • History of layered manufacturing • Stereolithography • Solid ground curing • Selective laser sintering • Fused deposition modeling • Laminated object manufacturing • Other systems | Chapter 4 |
5 | The underlying material science • Photopolymers • Thermoplastics • Powders | Chapter 5 |
6 | The underlying material science • Photopolymers • Thermoplastics • Powders | Chapter 6 |
7 | Generating CAD models suitable for automated fabrication • The .STL file format • Repairing CAD models • Adding support structures • Model slicing | Chapter 7 |
8 | Generating CAD models suitable for automated fabrication • The .STL file format • Repairing CAD models • Adding support structures • Model slicing | Chapter 8 |
9 | Secondary processing • RTV silicone rubber molds • Investment casting • Improving the quality of prototyping • Improving the productivity in manufacturing • Medical applications | Chapter 7 |
10 | Secondary processing • RTV silicone rubber molds • Investment casting • Improving the quality of prototyping • Improving the productivity in manufacturing • Medical applications | Chapter 8 |
11 | Secondary processing • RTV silicone rubber molds • Investment casting • Improving the quality of prototyping • Improving the productivity in manufacturing • Medical applications | Chapter 11 |
12 | Secondary processing • RTV silicone rubber molds • Investment casting • Improving the quality of prototyping • Improving the productivity in manufacturing • Medical applications | Chapter 12 |
13 | The future • Remote manufacturing on demand • Ongoing research activities • How can these technologies be improved? | Chapter 13 |
14 | The future • Remote manufacturing on demand • Ongoing research activities • How can these technologies be improved? | Chapter 14 |
15 | Final exam period | All chapters |
16 | Final exam period | All chapters |
Sources
Course Book | 1. Rafiq Noorani, Rapid Prototyping: Principles and Applications, John Wiley & Sons, Inc., 2006, ISBN 0-471-73001-7 |
---|---|
Other Sources | 2. Ian Gibson (ed.), Advanced Manufacturing Technology for Medical Applications, John Wiley & Sons, Ltd., 2005, ISBN 0-470-01688-4 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 15 |
Laboratory | 1 | 25 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 5 | 5 |
Homework Assignments | 6 | 10 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 25 |
Toplam | 15 | 100 |
Percentage of Semester Work | 75 |
---|---|
Percentage of Final Work | 25 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge of mathematics, science, and engineering. | |||||
2 | An ability to design and conduct experiments, as well as to analyze and interpret data. | |||||
3 | An ability to design a system, component, or process to meet desired needs. | |||||
4 | An ability to function on multi-disciplinary teams. | |||||
5 | An ability to identify, formulate, and solve engineering problems. | |||||
6 | An understanding of professional and ethical responsibility. | |||||
7 | An ability to communicate effectively. | |||||
8 | The broad education necessary to understand the impact of engineering solutions in a global and societal context. | |||||
9 | Recognition of the need for, and an ability to engage in life-long learning. | |||||
10 | Knowledge of contemporary issues. | |||||
11 | An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | |||||
12 | Skills in project management and recognition of international standards and methodologies |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 4 | 64 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 3 | 48 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 6 | 3 | 18 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 2 | 4 |
Prepration of Final Exams/Final Jury | 1 | 3 | 3 |
Total Workload | 137 |